论文阅读 [TPAMI-2022] YOLACT++ Better Real-Time Instance Segmentation

论文阅读 [TPAMI-2022] YOLACT++ Better Real-Time Instance Segmentation

论文搜索(studyai.com)

搜索论文: YOLACT++ Better Real-Time Instance Segmentation

搜索论文: http://www.studyai.com/search/whole-site/?q=YOLACT+++Better+Real-Time+Instance+Segmentation

关键字(Keywords)

Prototypes; Real-time systems; Image segmentation; Object detection; Detectors; Task analysis; Shape; Instance segmentation; real time

机器视觉

检测分割

摘要(Abstract)

We present a simple, fully-convolutional model for real-time ( > 30 >30 >30>30 fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach.

我们为实时( > 30 >30 >30>30 fps)实例分割提供了一个简单的、完全卷积的模型,该模型在MS COCO上实现了在单个Titan Xp上评估的竞争结果,比以前任何最先进的方法都要快得多。.

Moreover, we obtain this result after training on only one GPU.

此外,我们只在一个GPU上进行训练就得到了这个结果。.

We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients.

我们通过将实例分割分成两个并行子任务来实现这一点:(1)生成一组原型掩码;(2)预测每个实例的掩码系数。.

Then we produce instance masks by linearly combining the prototypes with the mask coefficients.

然后,我们通过将原型与掩码系数线性组合来生成实例掩码。.

We find that because this process doesn’t depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free.

我们发现,因为这个过程不依赖于重新冷却,所以这种方法可以产生非常高质量的掩模,并且免费展示时间稳定性。.

Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional.

此外,我们还分析了原型的紧急行为,并表明它们能够以翻译变体的方式自行对实例进行本地化,尽管它们是完全卷积的。.

We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty.

我们还提出了快速NMS,即以12毫秒的速度下降,以替代性能损失较小的标准NMS。.

Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time…

最后,通过将可变形卷积合并到主干网络中,优化具有更好锚定尺度和纵横比的预测头,并添加一个新的快速掩码重新计分分支,我们的YOLACT++模型可以在MS COCO上以33.5 fps的速度实现34.1 mAP,这相当接近最先进的方法,同时仍然实时运行。。.

作者(Authors)

[‘Daniel Bolya’, ‘Chong Zhou’, ‘Fanyi Xiao’, ‘Yong Jae Lee’]

### Mask R-CNN ResNet-101 FPN 1x COCO Configuration File Details and Usage The `mask-rcnn_r101_fpn_1x_coco.py` configuration file specifies parameters for training a Mask R-CNN model with a ResNet-101 backbone, using Feature Pyramid Network (FPN), on the COCO dataset over one epoch. This setup is designed to perform both object detection and segmentation tasks. #### Model Architecture Specification In this configuration, the architecture employs an instance mask prediction mechanism as indicated by the parameter setting that signifies the inclusion of such functionality within the model structure[^1]. The choice of ResNet-101 provides deeper layers compared to shallower networks like VGG or even ResNet-50, potentially leading to better feature extraction capabilities especially beneficial for complex datasets like COCO which contains diverse categories of objects. #### Backbone Selection ResNet-101 serves as the backbone network due to its proven effectiveness in capturing hierarchical patterns from images through deep convolutional layers while maintaining computational efficiency via residual connections. For further enhancing multi-scale representation learning, FPN integrates top-down pathways along with lateral connections into the base CNN framework allowing improved performance across different scales of target instances during inference time. #### Training Schedule Given the suffix `_1x`, it implies a standard single-stage training schedule typically lasting around 12 epochs when applied to large scale benchmarks similar to MS COCO under default settings provided by MMDetection suite where each epoch roughly corresponds to processing all samples once throughout the entire dataset iteration process. #### Dataset Adaptation COCO stands out among other public available annotated corpora because not only does it cover extensive varieties ranging widely between common daily items up until rare animals but also comes equipped with rich annotations including bounding boxes alongside pixel-level masks making it particularly suitable for comprehensive evaluation purposes concerning visual understanding algorithms development efforts targeting real-world applications scenarios requiring high precision outputs regarding spatial localization information about detected entities present inside input imagery data streams. ```python model = dict( type='MaskRCNN', pretrained='torchvision://resnet101', # Specifies pre-trained weights source. backbone=dict(type='ResNet', depth=101), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict(...), roi_head=dict(...) ) data = dict( train=dict(dataset=dict(ann_file='annotations/instances_train2017.json')), val=dict(ann_file='annotations/instances_val2017.json'), test=dict(ann_file='annotations/image_info_test-dev2017.json') ) ``` --related questions-- 1. What are some key differences between Faster R-CNN and Mask R-CNN architectures? 2. How can transfer learning be effectively utilized with pre-trained models like ResNet-101 for custom object detection projects? 3. In what ways do various backbones impact the overall accuracy versus speed trade-off in modern detector designs? 4. Can you explain how FPN contributes towards improving small object detection results specifically within Mask R-CNN implementations?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值