论文阅读 [TPAMI-2022] YOLACT++ Better Real-Time Instance Segmentation

论文阅读 [TPAMI-2022] YOLACT++ Better Real-Time Instance Segmentation

论文搜索(studyai.com)

搜索论文: YOLACT++ Better Real-Time Instance Segmentation

搜索论文: http://www.studyai.com/search/whole-site/?q=YOLACT+++Better+Real-Time+Instance+Segmentation

关键字(Keywords)

Prototypes; Real-time systems; Image segmentation; Object detection; Detectors; Task analysis; Shape; Instance segmentation; real time

机器视觉

检测分割

摘要(Abstract)

We present a simple, fully-convolutional model for real-time ( > 30 >30 >30>30 fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach.

我们为实时( > 30 >30 >30>30 fps)实例分割提供了一个简单的、完全卷积的模型,该模型在MS COCO上实现了在单个Titan Xp上评估的竞争结果,比以前任何最先进的方法都要快得多。.

Moreover, we obtain this result after training on only one GPU.

此外,我们只在一个GPU上进行训练就得到了这个结果。.

We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients.

我们通过将实例分割分成两个并行子任务来实现这一点:(1)生成一组原型掩码;(2)预测每个实例的掩码系数。.

Then we produce instance masks by linearly combining the prototypes with the mask coefficients.

然后,我们通过将原型与掩码系数线性组合来生成实例掩码。.

We find that because this process doesn’t depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free.

我们发现,因为这个过程不依赖于重新冷却,所以这种方法可以产生非常高质量的掩模,并且免费展示时间稳定性。.

Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional.

此外,我们还分析了原型的紧急行为,并表明它们能够以翻译变体的方式自行对实例进行本地化,尽管它们是完全卷积的。.

We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty.

我们还提出了快速NMS,即以12毫秒的速度下降,以替代性能损失较小的标准NMS。.

Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time…

最后,通过将可变形卷积合并到主干网络中,优化具有更好锚定尺度和纵横比的预测头,并添加一个新的快速掩码重新计分分支,我们的YOLACT++模型可以在MS COCO上以33.5 fps的速度实现34.1 mAP,这相当接近最先进的方法,同时仍然实时运行。。.

作者(Authors)

[‘Daniel Bolya’, ‘Chong Zhou’, ‘Fanyi Xiao’, ‘Yong Jae Lee’]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值