Python实现ACO蚁群优化算法优化支持向量机回归模型(SVR算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

蚁群优化算法(Ant Colony Optimization, ACO)是一种源于大自然生物世界的新的仿生进化算法,由意大利学者M. Dorigo, V. Maniezzo和A.Colorni等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻径行为而提出的一种基于种群的启发式随机搜索算法"。蚂蚁有能力在没有任何提示的情形下找到从巢穴到食物源的最短路径,并且能随环境的变化,适应性地搜索新的路径,产生新的选择。其根本原因是蚂蚁在寻找食物时,能在其走过的路径上释放一种特殊的分泌物——信息素(也称外激素),随着时间的推移该物质会逐渐挥发,后来的蚂蚁选择该路径的概率与当时这条路径上信息素的强度成正比。当一条路径上通过的蚂蚁越来越多时,其留下的信息素也越来越多,后来蚂蚁选择该路径的概率也就越高,从而更增加了该路径上的信息素强度。而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制。通过这种正反馈机制,蚂蚁最终可以发现最短路径。

本项目通过ACO蚁群优化算法优化支持向量机回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

 数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

 关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

 关键代码如下:

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

 4.2 相关性分析

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建ACO蚁群优化算法优化支持向量机回归模型

主要使用ACO蚁群优化算法优化SVR算法,用于目标回归。

6.1 算法介绍

     说明:ACO算法介绍来源于网络,供参考,需要更多算法原理,请自行查找资料

蚁群算法是对自然界蚂蚁的寻径方式进行模拟而得出的一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路径上留下信息素进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此来指导自己的运动方向。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

 

蚁群算法公式:

 

蚁群算法程序概括:

(1)参数初始化

在寻最短路钱,需对程序各个参数进行初始化,蚁群规模m、信息素重要程度因子α、启发函数重要程度因子β、信息素会发因子、最大迭代次数ddcs_max,初始迭代值为ddcs=1。

(2)构建解空间

将每只蚂蚁随机放置在不同的出发地点,对蚂蚁访问行为按照公式计算下一个访问的地点,直到所有蚂蚁访问完所有地点。

(3)更新信息素

计算每只蚂蚁经过的路径总长Lk,记录当前循环中的最优路径,同时根据公式对各个地点间连接路径上的信息素浓度进行更新。

(4)判断终止

迭代次数达到最大值前,清空蚂蚁经过的记录,并返回步骤2。

6.2 ACO蚁群优化算法寻找最优参数值

关键代码:

 适应度迭代曲线图:

 最优参数:

 6.3 最优参数值构建模型

7.模型评估

7.1评估指标及结果

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

 从上表可以看出,R方分值为0.9991,说明模型效果比较好。

关键代码如下: 

7.2 真实值与预测值对比图

 从上图可以看出真实值和预测值波动基本一致,模型效果良好。

8.结论与展望

综上所述,本文采用了ACO蚁群优化算法寻找支持向量机SVR算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/18MvTpXBDipoThv8ODoDd9w 
# 提取码:8kzs

# 查看数据前5行
print('*************查看数据前5行*****************')
print(df.head())

# 数据缺失值统计
print('**************数据缺失值统计****************')
print(df.info())

# 描述性统计分析
print(df.describe())
print('******************************')

# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
plt.xlabel('y')
plt.ylabel('数量')
plt.title('y变量分布直方图')
plt.show()
### 回答1: 差分改进灰狼优化(Differential Improved Grey Wolf Optimization, DIGWO)是一种基于差分算法和灰狼优化算法的改进方法。其流程图如下: 1. 初始化种群:设定种群小和最迭代次数,并生成初始种群。每个个体的位置(解向量)表示一组参数,用于描述问题的优化目标。 2. 适应度评估:根据当前的个体位置,计算每个个体的适应度值。适应度值用来评估个体的解决方案在目标函数上的表现。 3. 确定领导者狼:根据适应度值小,选取具有最优适应度值的个体作为领导者狼。其位置用来表示最优解。 4. 更新灰狼位置:对于每个个体(除领导者狼外),根据差分算法和灰狼优化算法的策略,更新其位置。具体方式是计算个体与领导者狼之间的位置差,并根据特定策略来调整位置。 5. 适应度评估:根据更新后的灰狼位置,重新计算每个个体的适应度值。 6. 更新领导者狼:比较每个灰狼的适应度值,将适应度值更好的灰狼替换为领导者狼。 7. 终止条件判断:判断是否满足终止条件(达到最迭代次数或找到满意的解)。如果满足条件,结束算法,输出最优解;否则,返回步骤4继续优化。 差分改进灰狼优化(DIGWO)通过引入差分算法优化灰狼位置的策略,能够更好地在解空间中搜索最优解。同时,通过选择适应度值更好的灰狼作为领导者狼,并进行位置的更新和调整,使得整个优化过程具有更好的收敛性和全局搜索能力。 ### 回答2: 差分改进灰狼优化(Differential Grey Wolf Optimization,DGWO)是一种优化算法,结合了差分进化算法和灰狼优化算法的思想,用于解决支持向量回归(Support Vector Regression,SVR)问题。 以下是差分改进灰狼优化SVR的流程图: 1. 初始化种群:确定灰狼个体的数量和位置,初始化种群空间。 2. 计算适应度:根据SVR问题的目标函数,计算每个灰狼个体的适应度值。 3. 确定领导灰狼:根据适应度值选取灰狼个体中适应度最好的个体作为领导灰狼。 4. 更新位置:根据领导灰狼的位置和其他灰狼个体的位置,采用差分进化算法的思想,更新灰狼个体的位置。 5. 计算适应度:根据更新后的位置,重新计算每个灰狼个体的适应度值。 6. 更新领导灰狼:根据更新的适应度值,更新领导灰狼的位置。 7. 是否满足停止条件:判断是否满足停止条件,如果满足则跳转到步骤9;如果不满足则继续下一次迭代。 8. 迭代更新:继续进行步骤4-6的操作,直到满足停止条件。 9. 输出结果:输出最优解和最优适应度值。 差分改进灰狼优化SVR的流程图如上所示,通过不断更新灰狼个体的位置,并根据适应度值进行领导灰狼的更新,最终获得SVR问题的最优解。算法综合了差分进化算法和灰狼优化算法的优点,能够在处理高维、非线性、非凸、非平稳等问题时表现出较好的性能。 ### 回答3: 差分改进灰狼优化(DHWGO)结合支持向量回归(SVR)可以用于优化问题的求解。下面是DHWGO-SVR的流程图: 1. 初始化参数: - 设置种群小pop_size和最迭代次数max_iterations。 - 将种群中的每个灰狼个体看作一个解,初始化每个灰狼的位置和适应度值。 2. 更新适应度: - 计算每个灰狼个体的适应度值,将其更新到个体信息中。 3. 根据适应度值排序: - 按适应度值降序对灰狼个体进行排序,找到最优个体。 4. 跟随者个体更新: - 对除最优个体外的其他个体,根据跟随者方程更新其位置。 5. 分区域个体更新: - 将种群分为多个区域,根据分区域个体更新方程更新各个区域内的灰狼个体位置。 6. 差分变异操作: - 对更新后的每个灰狼个体,根据差分变异方程进行变异操作,得到下一代解。 7. 适应度更新: - 计算每个灰狼个体的适应度值,更新到个体信息中。 8. 判断停止条件: - 如果达到设定的最迭代次数或满足停止条件,则结束算法。否则,返回步骤2。 9. 输出结果: - 输出最优解及其适应度值。 DHWGO-SVR利用差分改进灰狼优化算法进行种群更新,通过适应度值的计算和排序,找到最优解及其适应度值。跟随者个体和分区域个体的更新操作使种群在搜索过程中具有多样性和局部搜索能力。差分变异操作引入随机性,增加了算法的多样性,帮助避免陷入局部最优解。通过迭代更新和停止条件的判断,最终得到最优解。 注意:具体的参数设置和方程具体形式需要根据具体问题来确定,上述流程图只是给出了一种基本的DHWGO-SVR求解流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值