Python实现基于Optuna超参数自动优化的xgboost分类模型(XGBClassifier算法)项目实战

376 篇文章 275 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

xgboost是一种集成分类器(弱分类器),xgboost 是基于提升树的。

Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。

本项目使用基于Optuna超参数自动优化的XGBClassifier算法来解决分类问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

 数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

从上图可以看到,总共有9个字段。

关键代码:

3.2 缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

 

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3 变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

关键代码如下:

4.探索性数据分析

4.1 y变量分类柱状图

用Pandas工具的value_counts().plot()方法进行统计绘图,图形化展示如下:

从上面两个图中可以看到,分类为0和1的样本,数量基本一致。

4.2 y变量类型为0 x1变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

从上图可以看出,x1主要集中在-1到1之间。

4.3 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1 建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

5.2 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

6.构建Optuna超参数自动化的XGBoost分类模型

主要使用基于Optuna超参数自动化调优的XGBClassifier算法,用于目标分类。

6.1 Optuna超参数自动化调优框架介绍

Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。 它支持下面列出的各种类型的采样器:

  1. GridSampler (使用网格搜索)
  2. RandomSampler (使用随机采样)
  3. TPESampler (使用树结构的Parzen估计器算法)
  4. CmaEsSampler (使用CMA-ES算法)

一个极简的 Optuna 的优化程序中只有三个最核心的概念,目标函数(objective),单次试验(trial),和研究(study):

  1. objective 负责定义待优化函数并指定参/超参数数范围
  2. trial 对应着 objective 的单次执行
  3. study 则负责管理优化,决定优化的方式,总试验的次数、试验结果的记录等功能。

6.2 构建调优模型

关键代码如下:

6.3 最优参数展示

最优参数结果展示:

 

关键代码如下:

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、召回率、F1分值等等。

从上表可以看出,基于Optuna超参数自动调优的XGBoost分类模型效果良好。

关键代码如下:

7.2 分类报告

基于Optuna超参数自动调优的XGBoost分类模型分类报告:

从上图可以看到,分类类型为0的F1分值为0.89;分类类型为1的F1分值为0.90;整个模型的准确率为0.90。

7.3 超参数重要性可视化图

通过上图可以看出,超参数的重要性依次为:n_estimators、learning_rate
、subsample、max_depth、random_state。

8.结论与展望

综上所述,本项目采用了基于Optuna超参数自动调优的XGBoost分类模型,最终证明了我们提出的模型效果良好。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1vLa7r18dSM9yh-xX7QspgA 
# 提取码:2pj9

# 用Pandas工具查看数据
print(data.head())

# 数据缺失值统计
print('****************************************')
print(data.info())

print('****************************************')
print(data.describe().round(4))  # 保留4位小数点

# y变量分类柱状图
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
# kind='bar' 绘制柱状图
data['y'].value_counts().plot(kind='bar')
plt.xlabel("y变量类型")
plt.ylabel("数量")
plt.title('y变量分类柱状图')  # 设置标题
plt.show()  # 显示图片
  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
当然!以下是一个使用贝叶斯优化优化XGBoost回归模型超参数Python代码示例: ```python # 导入需要的库 import xgboost as xgb from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from bayes_opt import BayesianOptimization # 加载数据集 boston = load_boston() X, y = boston.data, boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义目标函数,即模型评估指标 def xgb_evaluate(max_depth, gamma, colsample_bytree): params = {'eval_metric': 'rmse', 'max_depth': int(max_depth), 'subsample': 0.8, 'eta': 0.1, 'gamma': gamma, 'colsample_bytree': colsample_bytree} dtrain = xgb.DMatrix(X_train, label=y_train) cv_result = xgb.cv(params, dtrain, num_boost_round=100, nfold=5) return -cv_result['test-rmse-mean'].iloc[-1] # 返回负的RMSE,因为贝叶斯优化寻找最小值 # 设置超参数搜索空间 pbounds = {'max_depth': (3, 10), 'gamma': (0, 1), 'colsample_bytree': (0.5, 1)} # 创建贝叶斯优化对象,并进行优化 optimizer = BayesianOptimization(f=xgb_evaluate, pbounds=pbounds, verbose=2) optimizer.maximize(init_points=5, n_iter=10) # 设置初始点数和迭代次数 # 输出调优结果 print(optimizer.max) # 使用最优参数训练模型 params = optimizer.max['params'] params['max_depth'] = int(params['max_depth']) dtrain = xgb.DMatrix(X_train, label=y_train) model = xgb.train(params, dtrain, num_boost_round=100) # 对测试集进行预测 dtest = xgb.DMatrix(X_test) y_pred = model.predict(dtest) # 计算均方误差 mse = mean_squared_error(y_test, y_pred) print("均方误差:", mse) ``` 以上代码使用`xgboost`库实现了贝叶斯优化XGBoost回归模型。首先,我们加载波士顿房价数据集,并将其划分为训练集和测试集。然后,我们定义了目标函数`xgb_evaluate`,该函数接受超参数并返回交叉验证的RMSE评分。接下来,我们设置了超参数的搜索空间`pbounds`。然后,我们创建了一个贝叶斯优化对象,并使用`BayesianOptimization`类进行优化。通过调用`maximize`方法,我们可以指定初始点数和迭代次数来进行贝叶斯优化。最后,我们输出了最优参数和相应的RMSE评分,并使用最优参数训练模型并在测试集上进行预测,计算均方误差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值