Python实现Stacking回归模型(随机森林回归、极端随机树回归、AdaBoost回归、GBDT回归、决策树回归)项目实战

354 篇文章 270 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

Stacking通常考虑的是异质弱学习器(不同的学习算法被组合在一起),stacking学习用元模型组合基础模型。stacking 的概念是学习几个不同的弱学习器,并通过训练一个元模型来组合它们,然后基于这些弱模型返回的多个预测结果输出最终的预测结果。

本项目应用Stacking回归算法通过集成随机森林回归、极端随机森林回归、Adaboost回归、梯度提升树回归、决策树回归五个算法进行建模、预测及模型评估。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有10个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-200~200之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建Stacking回归模型

主Stacking回归算法通过集成随机森林回归、极端随机森林回归、Adaboost回归、梯度提升树回归、决策树回归五个算法进行建模,用于目标回归。

6.1第一层模型参数

关键代码如下:

 6.2第一层模型特征重要性

 通过上图可以看出,随机森林模型特征重要性排名为x5、x6等。

通过上图可以看出,极端随机树模型特征重要性排名为x5、x6等。

 通过上图可以看出,AdaBoost模型特征重要性排名为x5、x6等。

通过上图可以看出,Gradient Boost模型特征重要性排名为x5、x6等。 

通过上图可以看出,所有模型特征重要性排名为x5、x6、x1等。

6.3 五种模型相关性分析

针对五种模型的预测结果进行相关性分析,通过上图可以看出大于0的为正相关 数值越大相关性越强;小于0的为负相关。

6.4 第二层模型参数

关键代码如下:

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

从上表可以看出,R方0.9707,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。   

8.结论与展望

综上所述,本项目采用了应用Stacking回归算法通过集成随机森林回归、极端随机森林回归、Adaboost回归、梯度提升树回归、决策树回归五个算法进行建模及模型评估,最终证明了我们提出的模型效果较好。 

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1VPWFSTp8cDrvLKYUYXiqvQ 
# 提取码:vqs0

# 用Pandas工具查看数据
print(df.head())
print('******************************')

# 数据缺失值统计
print(df.info())
print('******************************')

# 描述性统计分析
print(df.describe().round(4))
print('******************************')

# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
plt.xlabel('y')
plt.ylabel('数量')
  • 6
    点赞
  • 89
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 当然可以,以下是一个简单的 stacking 回归增量学习的代码案例: ```python from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import numpy as np # 加载数据集 boston = load_boston() X, y = boston.data, boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义基模型 model_1 = RandomForestRegressor(n_estimators=10, random_state=42) model_2 = LinearRegression() # 训练基模型 model_1.fit(X_train, y_train) model_2.fit(X_train, y_train) # 在测试集上评估基模型 y_pred_1 = model_1.predict(X_test) y_pred_2 = model_2.predict(X_test) mse_1 = mean_squared_error(y_test, y_pred_1) mse_2 = mean_squared_error(y_test, y_pred_2) print(f"MSE of model 1: {mse_1}") print(f"MSE of model 2: {mse_2}") # 定义元模型 meta_model = LinearRegression() # 使用基模型的输出作为元特征 X_meta_train = np.column_stack((model_1.predict(X_train), model_2.predict(X_train))) X_meta_test = np.column_stack((model_1.predict(X_test), model_2.predict(X_test))) # 在元训练集上训练元模型 meta_model.fit(X_meta_train, y_train) # 在测试集上预测 y_pred_meta = meta_model.predict(X_meta_test) mse_meta = mean_squared_error(y_test, y_pred_meta) print(f"MSE of meta model: {mse_meta}") # 增量学习 for i in range(X_test.shape[0]): # 添加新的样本 x_new = X_test[i].reshape(1, -1) y_new = y_test[i] # 使用基模型的输出作为元特征 x_meta_new = np.array([model_1.predict(x_new), model_2.predict(x_new)]).reshape(1, -1) # 在元模型上预测增量部分 y_pred_incremental = meta_model.predict(x_meta_new) - np.mean(y_pred_meta) # 更新元模型预测值 y_pred_meta += y_pred_incremental # 在基模型上增量学习 model_1.n_estimators += 1 model_1.fit(x_new, y_new) # 在元特征上增量学习 X_meta_train = np.vstack((X_meta_train, x_meta_new)) y_train = np.append(y_train, y_new) meta_model.fit(X_meta_train, y_train) # 在测试集上评估 y_pred_1 = model_1.predict(X_test) y_pred_2 = model_2.predict(X_test) X_meta_test = np.column_stack((y_pred_1, y_pred_2)) y_pred_meta = meta_model.predict(X_meta_test) mse_meta = mean_squared_error(y_test, y_pred_meta) print(f"Iteration {i+1}, MSE of meta model: {mse_meta}") ``` 在这个代码案例中,我们首先使用随机森林模型和线性回归模型作为基模型,训练这些基模型,并使用其输出作为元特征。然后,我们使用线性回归模型作为元模型,使用元特征训练元模型,预测测试集上的结果,并计算其均方误差。 接下来,我们使用增量学习的方法,逐步添加新的样本和特征,并在测试集上重新评估元模型的性能。在每次迭代中,我们都会使用基模型的输出作为元特征,在元模型上预测增量部分,并更新元模型预测值。然后,我们在基模型和元模型上进行增量学习,并重新计算测试集上的均方误差。 需要注意的是,这个代码案例只是一个简单的示例,实际中可能需要根据具体情况进行修改和优化。 ### 回答2: 以下是一个使用Stacking回归进行增量学习的具体案例代码: import numpy as np from sklearn.metrics import mean_squared_error from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from mlxtend.regressor import StackingRegressor # 加载波士顿房价数据集 boston = load_boston() X, y = boston.data, boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 初始化基础模型 lr = LinearRegression() rf = RandomForestRegressor(random_state=1) gb = GradientBoostingRegressor(random_state=1) # 初始化Stacking回归模型,基础模型为lr, rf, gb stacking_reg = StackingRegressor(regressors=[lr, rf, gb], meta_regressor=rf) # 第一阶段学习 stacking_reg.fit(X_train, y_train) # 增量学习:使用全部训练集进行累积训练 stacking_reg.fit(X, y) # 预测结果 y_pred = stacking_reg.predict(X_test) # 评估结果 mse = mean_squared_error(y_test, y_pred) print("Mean Squared Error: ", mse) 在这个例子中,我们加载了波士顿房价数据集,并将数据集划分为训练集和测试集。然后,我们初始化了三个基础模型:线性回归模型(lr)、随机森林回归模型(rf)和梯度提升回归模型(gb)。接下来,我们使用这些基础模型初始化Stacking回归模型stacking_reg),其中meta_regressor是随机森林回归模型(rf)。通过调用fit方法,我们可以对Stacking回归模型进行第一阶段的学习,然后使用fit方法进行增量学习(使用全部训练集进行累积训练)。最后,我们使用测试集进行预测,并计算均方误差作为评估指标。 ### 回答3: Stacking回归是一种集成学习方法,它通过将多个基学习器的预测结果作为输入数据,再经过一个次级学习器来产生最终的预测结果。而增量学习是指可以逐步添加新的训练样本来更新模型的学习方法。下面是一个使用Stacking回归进行增量学习的具体案例代码: ```python # 导入所需库 from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import StackingRegressor from sklearn.datasets import make_regression # 创建增量学习所需的模型 base_models = [ ('linear', LinearRegression()), # 基学习器1: 线性回归 ('tree', DecisionTreeRegressor()) # 基学习器2: 决策树回归 ] stacking_model = StackingRegressor(estimators=base_models, final_estimator=LinearRegression()) # 创建模拟数据集 X, y = make_regression(n_samples=100, n_features=10, random_state=0) # 初始训练 stacking_model.fit(X, y) # 增量学习 new_X, new_y = make_regression(n_samples=10, n_features=10, random_state=1) stacking_model.fit(new_X, new_y) # 预测 test_X, test_y = make_regression(n_samples=10, n_features=10, random_state=2) pred_y = stacking_model.predict(test_X) # 打印结果 print("预测值:", pred_y) ``` 以上代码实现了一个使用Stacking回归进行增量学习的案例。首先创建两个基学习器,一个是线性回归,另一个是决策树回归,并使用StackingRegressor将两个基学习器集成为一个模型。然后使用make_regression函数创建模拟数据集进行训练和增量学习。最后使用predict函数对新的测试数据进行预测,并打印结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值