【阶段四】Python深度学习04篇:深度学习项目实战:深度神经网络预测客户流失率(分类模型)

本文介绍了使用Keras构建深度神经网络预测金融客户流失率的项目,涉及数据预处理、探索性数据分析、特征工程及模型优化,如添加Dropout层进行正则化防止过拟合。
摘要由CSDN通过智能技术生成

本篇的思维导图

深度神经网络预测客户流失率(分类模型)


项目背景


       应用Keras框架构建单隐层网络和深度神经网络进行金融客户流失率的预测,以及模型的优化。主要用来熟悉Keras全连接层网络的使用。


数据获取


本次建模数据来源于网络,数据项统计如下:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值