混沌系统在图像加密中的应用(荷控忆阻器的混沌电路)
前言
忆阻混沌电路是一种基于忆阻器的电路,可以产生复杂的非线性动力学行为,即混沌行为。它是通过将忆阻器与其他电子元件组合在一起,形成一个反馈环路来实现的。忆阻混沌电路具有以下主要组成部分:
(1)忆阻器:忆阻器是电路中的核心元件,其电阻值随时间和输入电流的变化而变化。它能够保持电荷或电流的历史状态,并且可以通过施加电压或电流来改变其电阻值。忆阻器通过在其电路中引入非线性特性,为电路引入了记忆性和非线性响应,从而产生了混沌行为。
(2)电容器:电容器用于存储电荷并产生电场。在忆阻混沌电路中,电容器可以与忆阻器一起构成一个RC环路,从而产生反馈。
(3)电感器(可选):电感器用于存储磁能,并产生磁场。在一些忆阻混沌电路中,电感器可以与其他元件一起组成RLC环路,增强电路的非线性和混沌特性。
(4)运算放大器:运算放大器用于将电路的输出信号放大,并将其反馈回输入端。它对忆阻混沌电路中的信号放大和反馈起着重要作用。
忆阻器(Memristor)是 Chua从理论上预测的电路的第四个基本元件,其电阻的非线性特征是由电荷 q 和磁通 φ 定义的,这个电路变量是其他三个基本元件无法替代的,磁通量φ按电荷q 的改变率称之为“忆阻值”:
根据法拉第电磁感应定律和求导法则,流经忆阻器的电压和电流具有如下关系式
一、什么是电荷控制型忆阻器
电荷控制型忆阻器(Charge-Controlled Memristor)是一种特殊类型的忆阻器,其电阻值(阻抗)取决于通过它的电荷量。
电荷控制型忆阻器的工作机制与电荷在忆阻器中的积累和释放有关。在一个电荷控制型忆阻器中,当通过它的电流或电荷超过一个阈值时,忆阻器的电阻值将发生变化。进一步的电荷输入将导致电阻值继续增加,而电荷释放则将导致电阻值减小。
这种电荷控制机制可以实现类似生物突触的行为,其中突触的强度(权重)取决于之前突触上通过的电荷量。这种忆阻器的行为在神经网络和模拟突触器的研究中具有应用价值,可以用于构建具有类似人脑的计算模型。
二、双荷控忆阻器的混沌电路设计
本节内容选取了论文《含两个荷控忆阻器最简混沌电路的设计与研究》来进行研究。如图1所示含两个荷控忆阻器的混沌电路,除了两个忆阻器外只用了四个元件,两个电感,一个负电导和一个电容,电路巧妙采用了串并联形式。由于忆阻器是无源器件,为了使电路产生振荡,将一个负电导与其中一个忆阻器串联,另一个忆阻器与电感串联。在这个电路里两个忆阻器是完全相同的,其表达式用式(1)~(2)表示,其中式(2)是忆阻器内部状态控制表达式。
其中 , a, b, e, f 为参数, z 为荷控忆阻器的内部状态变量。
电路中两个电感 L 是完全相同的。根据基尔霍夫电压和电流定律以及元件的伏安特性,图 1 所示的电路状态方程可以表示为
方程中所对应的的五个状态变量分别为(iL,vC,im1,z1,z2),其中的 z1、z2 为两个忆阻器内部状态变量。
三、双荷控忆阻器的混沌电路特性分析
1.时序图和相图
选择参数 L=0.4 H,a=0.5,b=0.5,G=1.5 S,e=0.3,f=1.0,C=0.1 F,采用ODE45方法计算得到系统(3)的仿真结
果。
(1)以下是5个变量的波形图,说明随时间变化具有非周期性,处于混沌状态。
(2)下图仿真了忆阻器 z1 和 z2 的伏安特性曲线,发现这两个相同的忆阻器连接在不同支路中,各自的 vm和 im在不同范围内变化,伏安特性是不同的,但两个忆阻器电阻具有相似的非线性特点,具有忆阻器典型的斜体“8”字形紧磁滞回线特性,而且是每次的轨线不重复的混沌态。
(3)根据忆阻器无源定理,荷控忆阻器的有源性或无源性可用 M(q) 来表征,即当 M(q)≥0 时表示忆阻器是无源的,否则表示忆阻器呈现为有源性。从下图 im–pm 关系图可以判断这两个忆阻器的即时功率恒为正值,表明都是无源的,而且忆阻器吸收功率随时间变化的,呈混沌态。
2.功率谱和庞加莱截面映射
功率谱是一种用于研究信号频率特性的工具。混沌系统产生的信号通常具有非常复杂的频谱结构,功率谱可以帮助我们理解信号的频域分布情况。可以看出该系统的频谱分布较为广泛、连续的,则说明系统的运动是随机的。其中
横坐标:横坐标表示频率,以赫兹(Hz)或者角频率(rad/s)作为单位。频率表示信号中不同频率分量的存在。低频信号的频率较低,高频信号的频率较高。
纵坐标:纵坐标表示功率或能量。功率谱表示了信号在不同频率上的功率或能量分布。
庞加莱截面映射(Poincaré section mapping)是一种在动力系统中用于研究混沌行为的方法。它是根据亨利·庞加莱(Henri Poincaré)的工作而命名的,他在19世纪末首次使用这种映射来研究三体问题中的混沌现象。庞加莱截面映射基于以下观察:对于一个具有混沌行为的动力系统,使其在高维相空间中的轨迹变得难以理解和分析。然而,通过选择适当的平面(截面),我们可以将高维相空间的轨迹投影到较低维的平面上,从而更容易进行分析。
下图分别是系统在 y=0 和 z=10 两个截面上的庞加莱截面图。这两个图都是由具有一些线和一定形状的带状图案组成,说明系统的运动既具有确定性又具有随机性,是混沌系统。