银行视角下,量化产品是怎样的角色?

本文探讨了量化策略在银行理财转型中的角色,分析了公募和私募量化基金的发展趋势,以及银行客户对量化产品的认知和需求。面对净值化转型,量化策略提供了稳健的绝对收益产品,满足了银行客户的风险收益特征需求。然而,量化产品在零售客群中的认知不足,以及策略设计与客户需求的平衡问题,成为了量化策略发展的关键挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:留富兵法

作者:国盛证券金融工程团队

本文为国盛证券2019年秋季资本市场峰会,金融工程分论坛纪要

 

刘富兵:随着各家银行理财子公司的相继成立,未来银行理财子公司在整个二级市场的影响将越来越大,尤其是银行对我们量化产品的建议及思考将影响甚至改变未来量化的投资模式,今天我们有幸请到某商业银行的领导来跟我们一起分享下他们关于量化产品方面的一些心得。

某总:非常荣幸应国盛证券的邀请,跟大家交流一下银行视角下的量化产品定位。今天我的交流的内容主要分三块:

  • 第一个是总结一下近年来量化策略发展的整体局面;

  • 第二个跟大家分享一下量化策略在银行的视角下承担怎么样的角色,银行的需求对量化产品有怎么样的激励?

  • 最后是对量化产品的定位做思考。

近年来量化策略发展的整体局面

我本人在私人银行部主要牵头资本市场,也负责过委外业务还有量化这一块,所以先讲一下量化策略这一块的发展。

量化策略发展大家感同身受,从整体来看,一方面,目前公募的量化基金呈现偏工具化的方向。应该说包括刚刚各位嘉宾介绍的ETF的发展,包括不断的推陈出新的smartbeta类的基金,还有主题类基金等等,都是量化策略在公募基金当中的应用。同时也可以看到,去年和今年以来,被动性的量化基金,参照境外的大的量化基金的模式,也是不断的调低被动性基金的费率,从而更好的满足资产配置对量化类工具的需求,目前来看被动基金的增长也是相对比较明确的趋势。

另外一方面,私募的量化可能相比于公募量化发展更为迅猛些。即便是银行代销方面我们也是发现私募量化上升比较快,私募量化整体的策略方向还是以提供偏稳定的绝对收益的目标为主。从近几年的发展趋势来看,私募逐步的演化也是偏向高频化和系统化的方向。从今年的结构上来看,日内的量化和日内高频成为私募量化获取收益率主要的手段。

量化策略在目前的市场供给产品中是什么样的角色呢?众所周知,银行理财自从资管新规和理财新规出台以来,本身面临资产端的期限匹配的要求、净值化转型的要求,整体来说对这类稳健型理财的供应有很大的挑战,一来是供应的下降,二来是收益的下降。同时对银行客户来说,资产配置的需求并没有产生显著的转移,仍然会偏好这种风险收益特征相对比较稳健,能够获取绝对收益的产品。这就决定了我们需要从净值化转型当中寻找满足投资者这类预期的品种和策略。整体上来看,量化策略的风险收益特征在经历了这几年市场的考验和洗礼后,整体对银行客户甚至是高净值客户在配置中低风险收益特征的品种上是有一定的帮助的。另外一点这类品种的市场容量或者是供给还是处于非常紧俏的状态,也就是说供需关系目前并不能完全满足。

另外一方面,银行客户对于量化策略的认知仍然处于不断健全的过程当中,因为其实我们讲量化的发展也讲了很多年了,在座的各位应该深有体会,那就是客户对量化的认知上仍然是朦胧的状态。因为量化本身跟个人客户解释策略逻辑包括它的运作投资方式,相比固定收益和权益来说都有更大的挑战和难度,投资者往往比较难以理解和认知量化本身的逻辑。所以这个现象也一定程度上延缓了量化策略在零售客群当中的认知。

其实目前来看,往往投资者购买这些量化策略,除了一些机构投资者,或者比较成熟的投资者以外,更多还是看的是比较稳健的历史业绩,购买逻辑是参考购买银行理财。虽然现在大家的产品都说是净值化的产品,但投资者还是会有潜在的刚兑预期在里面。量化策略在2014,2015年以前有一波表现,相对来说在客群中比较认可,但是后面伴随着策略的失效和市场监管的切换,量化产品是给一些零售的客群泼过冷水的,未来如何使银行客户形成信任度和黏性,我觉得是今天给在座的各位量化投资管理人抛出的第一个问题。

当下,银行理财面临着转型,整体产品的资产配置需要不同类型的策略进行补充。传统的主动投资也是比较重要的一个方向,往往风险的特征和包括A股市场的不确定性,会给资产配置中放入权益提升挑战,造成的结果就是对于银行的净值化理财,一方面需要给客户说明清楚这个产品的风险收益特征和投资运作逻辑,另外一方面又不希望让投资者承担过高的市场风险,从而流失既有的理财份额,这些其实也给量化策略提供了发展的空间。

对于量化策略,市场上推的比较多的,一类是对冲型产品,当然也会加入一些类似CTA和期权等等复合的策略,另外一类是很多公募或者是私募机构做的相对收益指数增强类的产品,这些产品从表面上看,的确是相比于纯粹的购买一些宽级指数有一定的优势。但是另外一方面,对于银行客群来说接受这些产品往往面临几方面的挑战:

第一是相对收益的产品对标的指数相对比较单一一些,往往是大家觉得500的差比较大,或者是Ahpha比较好做,就集中在500的指数当中,这个选择的空间是比较窄的。

第二个这类产品的收益其实也依赖于公募或者是私募在这方面的Ahpha的获取能力,但是并不能说是绝对增强的概念,并不会为客户保障这种增强收益的特点,所以说对客户的信任传递上会有一定的影响,这个也是我今天想抛出的第二个问题。量化机构在产品设计和真正识别客户需求之间需要寻找一个平衡点,到底是因为我容易做这样的产品所以我给客户提供这样的产品,还是说因为我的客户需要这样的产品所以我给他提供这样的产品?这个可能是第二个我想说的关于量化策略在银行视角下面临的机遇和挑战中的问题。

第三点,当我们思考量化策略这类产品的整体定位时,被动指数这个刚刚前面两轮,包括贝莱德的分享,包括ETF团队的交流,其实给大家也提出了一个很好的观点,其中有一点我觉得非常有感触,就是客户的资产配置到底是由谁来做的问题?

从银行角度来说,往往是两方面,一方面可能由银行担任了,过往来看是银行担任了机构投资者的角色,替客户配置,给客户这样的产品。这个可能也是净值化转型以后理财子公司转型中也会面临着一个方向,怎么样帮助客户做资产配置,包括对高净值客户做家族信托、全权委托的业务,当替客户做这样的配置时,可能往往会更偏好工具类的品种来帮助实现资产配置这样的目标。另外一方面可能更多的对于银行的个人客户来说,其实资产配置不一定完全依赖于银行或者是理财顾问来替他做抉择,很多选择权还是在个人。这个时候可能更需要的是一些收益特征,或者是风格特征相对比较明确的品种,绝对收益会是目前在银行逐步减少理财供给和非标供给的情况下比较好的替代的品种。

从公募目前的发展态势来说,被动指数基金整体还在逐步增加管理规模。其实smartbeta也是帮助投资者理解量化的一类非常好的工具,因为投资者直接去理解一个混合的Ahpha策略,并不能通过简单的语言上的描述理解这个量化策略的核心逻辑。但是我个人理解,smartbeta其实是一个通过一定的逻辑,或者是单一的因子,单一的风格,单一的行业给投资者逐步理解量化运作逻辑的重要的途径。在这点上其实是无论是公募还是私募,都为量化产品在广大的零售客群中获取高认可度,做出了一个非常大的贡献。

量化策略在银行的视角下承担怎么样的角色

第二点是目前量化私募也产生了一个新的局面:今年以来绝对收益私募基金的发展非常的迅猛。原来的百亿私募的榜单中,几乎看不到量化私募的身影,而目前百亿私募的数量据我们统计有5-6家,而且规模还在不断的增加,这是非常好的现象。但另外一方面我们需要考虑的问题是,投资者既然是为了获取绝对收益,那量化类的私募相比于权益类的私募来说更依赖于业绩的体现。在这一点上,其实规模对投资者来说不一定是好事儿。

目前这对公募基金和量化类的私募基金都提出了挑战:怎么在行业发展的过程当中平衡规模和业绩之间的关系?既提供充裕的量化产品供给,同时又规避因规模造成的策略失效或者是收益摊薄的现象?其实目前量化产品的需求的确是非常旺盛的,从银行的销售来看,基本上是非常的热火,但是整体是面临着头部私募,量化产品资源的匮乏的情况。所以这点可能也是一个量化机构需要考虑的,我们怎么把这个市场做的足够大,以至于可以吸引理财类的客户,把它的一部分风险偏好相近的资金投入到市场中来做绝对收益资产配置替代的问题,这也是今天抛出的第三个问题。

拓展阅读:

1.一个量化策略师的自白(好文强烈推荐)

2.市面上经典的量化交易策略都在这里了!(源码)

3.期货/股票数据大全查询(历史/实时/Tick/财务等)

4.干货| 量化金融经典理论、重要模型、发展简史大全

5.从量化到高频交易,不可不读的五本书

6.高频交易四大派系大揭秘

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值