透过海龟法则,我们能发掘什么重要的交易因素

海龟交易法则是由著名的交易员理察·丹尼斯创立的,是少数的被人认可的可以持续获利的机械式交易法则。理察·丹尼斯把这个法则传授给了13名初级交易者,并划出资金供他们操作。在四年的时间里他们获得了年均复利80%的收益,这是非常了不起而且非常成功的测试。向人证明了交易的技巧是可以学习的,交易获利是可以通过一系列简单法则实现的。

虽然获利并没有这么简单,它对人的纪律性和执行力上都有很高的要求,并不是学会几个原则就能轻易成功的,但我们仍然可以在海龟法则上发掘出交易中一些重要的因素。借助大师的视线洞悉真理的门径,使我们在交易中少走一些弯路。

首先海龟法则是一个趋势跟随的系统,而趋势跟随系统的基本思想就是顺着趋势交易。在趋势形成后会延续的前提下,海龟法则确定了价格在突破前20日的最高价或最低价时入市,即海龟法则认为价格在突破20日极限价的时候就是即有行情得到确认的时候。

在此时介入风险减少而成功率得到大幅提升,无论从股市或期货的历史图表上都可以清晰的看到,价格总是以趋势的方式行进的。当价格突破前一段时间的盘整之后往往会再延续一段矩离。

海龟法则的重点不在行情分析上,就像所有交易的重点都不在预测行情上一样,是不是准确的评估了行情并不重要,重要的是赢利的时候获得了多少,亏损的时候失去了多少。以及所面对的风险是不是在可承受范围内。顺势而为在整个海龟法则中只占较轻微的一面,海龟法则之所以让交易员可以在变化莫测的市场游刃有余,重点在于其资金管理的运用。这套法则对头寸规模有很严格的限制。

按照原法则内的描述为:

每一交易单位=帐户的1%/(N×每点价值量)

其中N为市场价格波动的平均范围。

通过这个公式可以看到,决定头寸规模的因素中含有市场的波动性,也就是市场最大风险。把市场的可能风险考虑到每一笔交易头寸中是海龟法则得以成功的关键。在确定了交易单位之后,海龟法则根据市场的不同限定了最大的头寸规模,在单一市场为4个单位,在高度相关市场为6个单位。同时美国著名的交易大师 larry williams在管理头寸规模方面也有独到见解,写下来以便与海龟法则相互佐证。

他的计算公式是:

(帐户余额×风险%)÷最大损失=交易量。

larry williams同样客观的限定了每笔交易的规模,可以相信这样一个事实,在交易中有所成就的人都清楚该拿多少资金去冒险。如果交易是一个持续的事件而不是一两次的赌博。那么每笔头寸的规模就构成了交易的基础,客观的并一致性的运用头寸规模控制,可以将风险控制在一个可知的范围,进而为接下来的操作铺平道路。

海龟法则同样用另外的方法限定了整体的交易规模,每当帐户亏损10%时,将总帐户的规模减小20%。也就是在帐户发生亏损的时候所能应用的资金将会递减,隔离开了连续亏损对帐户的侵害。

海龟法则的加仓策略也是很得力的,每次建立头寸的时候只允许动用一个单位,建立后以1/2N的间隔顺势增加头寸。这种加仓模式需要严格的离市或止损策略相配合。海龟法则以头寸风险为基础设置止损,交易风险控制在2%以下。即风险达到2%的时候就平仓止损。而离市策略与入市策略相呼应,在多头头寸为10日最低价,空头头寸为10日最高价。仍然是以突破为平仓点,一旦价格穿过离市空破价即平仓离市。在交易的策略里面加仓、离市、止损都是很重要的方面。海龟法则通过简单的规则使扩张赢利、减少亏损的交易理念得以充份发挥。

通过海龟法则发掘出的交易因素可以归纳为:持续的使用同一操作策略,客观的限定交易规模,在交易有赢利的时候增加头寸以扩大赢利,在帐户发生亏损时,及时停损并减小交易规模。为止损和离市设定具体的点位,彻底的执行既定计划并不受情绪影响。海龟法则本身很重要的一点是排除了人为的干预,使人不必因为情绪的波动而影响交易绩效,通过周密的资金管理来控制风险。成功的交易者判断行情的方式各种各样,但在资金管理方面都大同小异,可以借鉴海龟法则中的资金管理思想定立切实可行的计划。

国外对交易的研究很深入,在有些方面要超过业内的同行,但在哲理方面要远落后于中国,毕竟交易更像一门艺术,在数字的背后蕴藏着深厚的哲理,一些事物的道理是相通的,能否很深刻的理解还在于不懈的努力。最后,引用易经上的一句话做为结尾:天下同归而殊途,一致而百虑。天下何思何虑!

拓展阅读:

1.一个量化策略师的自白(好文强烈推荐)

2.市面上经典的量化交易策略都在这里了!(源码)

3.期货/股票数据大全查询(历史/实时/Tick/财务等)

4.干货| 量化金融经典理论、重要模型、发展简史大全

5.从量化到高频交易,不可不读的五本书

6.高频交易四大派系大揭秘

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值