Z-Score模型的进阶版:Zeta模型

本文探讨了Z-Score模型和Zeta模型在企业破产预测中的应用,Zeta模型通过增加变量提升了预测准确性。然而,针对A股市场的实证研究表明,原始模型的适用性有限,可能由于样本量不足和行业选择不透明等问题。通过Logistic回归重新计算系数并调整模型,尽管回测结果显示整体亏损,但特定时期内如ST股票的上涨表明模型在特定市场环境下仍有其价值。策略源码已分享以供进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可能很多人都有听过或用过Z-Score模型,该模型是国外Altman教授在1968年开发,用来分析、判断一家企业破产的可能性。后来,Altman教授等人对Z-Score模型进行了二次开发,即Zeta信用风险模型。

Zeta模型从Z-Score模型的5个变量增加到了7个,分别是:

1.资产报酬率,采用税息前收益/总资产衡量。

2.收入的稳定性,采用对X在5-10年估计值的标准误差指标作为这个变量的度量。

3.债务偿还,可以用人们所常用的利息保障倍数(覆盖率)即利税前收益/总利息偿付来度量。

4.积累盈利,可以用公司的留存收益(资产减负债/总资产)来度量。

5.流动比率,可以用人们所熟悉的比率衡量。

6.资本化率,可以用普通股权益/总资本。

7.规模,可以用公司总资产的对数形式来度量。

PS:以上信息来源于百度百科

出于商业机密,Zeta模型的变量系数没有公开(其实公开了也不适用于当下的A股),网上能获取的相关信息也不多,但我们在知网上查到了一篇应用该模型的论文:《基于ZETA模型的我国上市公司信用风险度量研究》。今天就是以其作为本次策略研究的参考。

论文中对相关变量进行了一些调整,同时基于Fisher判别分析求得了一系列变量系数并得出相关结论:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值