Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering-CVPR2020

无监督域自适应(Unsupervised domain adaptive, UDA)是对目标域上的未标记数据进行预测。主流的UDA方法学习两个领域之间的对齐特征,这样根据源特征训练的分类器可以很容易地应用到目标特征上。然而,这种转移策略有可能破坏目标数据的内在辨识性。为了减轻这一风险,我们以结构域相似性假设为动机,提出通过对目标数据进行判别聚类,直接揭示目标的内在判别。我们使用结构源正则化来约束聚类解决方案,这取决于我们假定的结构域相似性。技术上,我们采用了一种灵活的基于深度网络的判别聚类框架,使网络预测标签分布与引入的辅助标签分布之间的KL差异最小;用源数据地面真实标签形成的辅助分布代替辅助分布,通过联合网络训练的简单策略实现结构化的源正则化。我们将我们提出的方法称为结构正则化深度聚类(SRDC),其中我们还通过中间网络特征聚类增强了目标识别,通过软选择小分歧源实例增强了结构正则化。仔细的消融研究表明我们建议的SRDC的疗效。值得注意的是,由于没有显式的域对齐,SRDC在三个UDA基准测试上优于所有现有方法。

为了解决通过明确学习域对齐特征而破坏内在数据判别的潜在问题,我们在本研究中提出了一种源正则化的深度判别聚类方法,以直接揭示目标数据之间的内在判别。该方法的动机是我们假设这两个领域的结构相似,为此我们将提出的方法称为结构正则化深度聚类(SRDC)。•为了从技术上实现SRDC,我们使用了一个灵活的深度聚类框架,该框架首先引入一个辅助分布,然后最小化引入的分布和网络的预测标签分布之间的KL差异;用源数据的地真标签代替辅助分布,通过联合网络训练的简单策略实现结构化的源正则化。在SRDC中,我们还设计了有用的成分,利用中间网络特征聚类来增强目标识别,并利用低发散源实例的软选择来增强结构正则化。•我们在UDA基准数据集上进行仔细的消融研究,以验证SRDC中提出的单个成分的疗效。值得注意的是,在没有显式域对齐的情况下,我们提出的SRDC在基准数据集上优于所有现有的方法

该框架首先引入一个辅助分布,然后最小化引入的分布和网络的预测标签分布之间的KL差异;用源数据的地真标签代替辅助分布
在这里插入图片描述

利用对抗和mmd方法进行源域和目标域的对齐
源数据和目标域数据满足两个假设:
1.领域识别假设:在单个领域中存在固有的数据识别结构,即源域或目标域的数据根据共享标签空间进行区分聚类。
2.类的紧密性假设:对应于同一个类标签的两个域的集群在几何上紧密。

损失函数:KL散度,网络损失
Qt:网络预测标签。Pt:聚类辅助标签
在这里插入图片描述

准确率:Office-31 based on ResNet-50
(1)源模型,对标记源样本的基础网络进行微调;
(2)SRDC (w/o结构源正则化)对源预训练模型进行精细调整,即不使用结构源正则化;
(3)SRDC (w/o特征识别),表示在特征空间中不进行源和目标识别的训练;
(4) SRDC (w/o软源样本选择),表示通过软源样本选择进行不增强训练。
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值