控制理论
文章平均质量分 93
CHH3213
主要研究自动驾驶决策规划控制。
每天都要保持健康的状态,提升专业能力,谨慎投资!
展开
-
【现代控制理论】| 线性系统的状态空间法
系统状态空间表达式可由系统微分方程、结构图、传递函数等其他形式的数学模型导出。描述某一系统的状态变量个数 (维数) 是确定的, 但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后, 仍可作为状态向量来描述系统。状态变量选择不同, 状态空间表达式形式也不一样。利用线性变换的目的在于使系统矩阵 A\boldsymbol{A}A 规范化, 以便于揭示系统特性, 利于分析计算。满秩线性变换不改变系统的固有特性。根据矩阵 A\boldsymbol{A}A 的特征根及相应的独立特征向量情况, 可将矩阵 A\bo原创 2022-10-31 14:50:59 · 5878 阅读 · 0 评论 -
【经典控制理论】| 自动控制原理知识点概要(下)
控制系统的综合和校正问题是在已知固有特性及期望指标的前提下, 确定校正装置, 使系统校正后能满足期望的性能指标。 校正过程如下:自动控制原理里最常见的基本控制规律是PID控制规律。各控制规律在系统校正中的作用与固有特性有关, 应具体问题具体分析。按照校正装置 Gc(jω)G_c(j \omega)Gc(jω) 的相位 φc\varphi_cφc 的不同,常用校正装置可以分为: 超前校正装置、滞后校正和滞后一一超前校正装置。基本特征 :φc(ω)>0: \varphi_c(\omega)>0:φc(ω)原创 2022-10-03 15:24:05 · 4258 阅读 · 1 评论 -
【经典控制理论】| 自动控制原理知识点概要(上)
反馈控制系统的一般组成如下图所示。自动控制系统有不同的类型, 但是对每一类系统的基本要求是一样的, 可以归结为: 稳、快、准。状态空间状态方程和输出方程统称为状态空间描述或状态空间表达式。线性定常系统状态空间表达式一般用矩阵形式表示x˙=Ax+Buy˙=Cx+Du \dot{x}=Ax+Bu\\ \dot{y}=Cx+Du x˙=Ax+Buy˙=Cx+Du传递函数模型定义:线性定常系统在零初始条件下,将输出量的拉氏变换与输入量的拉氏变换之比定义为线性定常系统的传递函数。G(s)=C(s原创 2022-09-30 13:47:26 · 11734 阅读 · 0 评论 -
【自动驾驶】LQR控制实现轨迹跟踪 | python实现 | c++实现
文章目录参考资料1. 基本概念1.1 运动学模型的离散状态方程1.2 LQR求解步骤2. python实现2.1 车辆模型2.2 相关参数设置2.3 生成轨迹曲线2.4 角度归一化2.5 解代数里卡提方程2.6 LQR控制算法2.7 主函数参考资料基于运动模型的LQR优化 强化学习与最优控制:用于轨迹跟踪的 LQRLinear–quadratic regulator (LQR) steering control路径规划与轨迹跟踪系列算法1. 基本概念从控制理论角度出发的讲解可以翻看博客。原创 2022-05-29 17:45:05 · 13849 阅读 · 19 评论 -
【自动驾驶】后轮位置反馈实现轨迹跟踪 | python实现 | c++实现
文章目录参考资料1. 基本概念参考资料自动驾驶中的规划控制概述A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicleshttps://zhuanlan.zhihu.com/p/463779321. 基本概念后轮反馈控制(Rear wheel feedback)是利用后轮中心的跟踪偏差来进行转向控制量计算的方法。如图所示,参考轨迹上与车辆后轴中心距离最近的点(xref,yref)(x原创 2022-05-28 23:16:16 · 4811 阅读 · 3 评论 -
【自动驾驶】Stanley(前轮反馈)实现轨迹跟踪 | python实现 | c++实现
文章目录参考资料1. Stanley算法1.1 算法思想1.2 公式推导1.3 横向误差变化率1.4 小结1. 算法伪代码2. Pure pursuit与Stanley 算法简单对比参考资料控制算法-Stanley前轮反馈控制法1. Stanley算法之前学习了纯追踪算法和PID算法在轨迹跟踪上的应用,现在学习Stanley算法。1.1 算法思想前轮反馈控制(Front wheel feedback)也就是常说的Stanley方法,其核心思想是基于车辆前轴中心点的路径跟踪偏差量对方向盘转向控原创 2022-05-23 14:00:02 · 9281 阅读 · 11 评论 -
【自动驾驶】PurePursuit实现轨迹跟踪 |python实现 |c++实现
文章目录参考资料1. 几何车辆模型2. Pure Pursuit(纯追踪)算法3. python代码实现参考资料轨迹跟踪Pure Pursuit方法使用pure pursuit实现无人车轨迹追踪1. 几何车辆模型在前文中讲解了PID实现轨迹跟踪,这篇来讲解纯追踪法。使用的车辆模型这里依旧采取以后轴中心为车辆中心的单车运动学模型其满足tanδf=LR(1) \tag{1} \tan{\delta_f}=\frac{L}{R}tanδf=RL(1)2. Pure Pursuit(纯原创 2022-05-20 21:06:55 · 9813 阅读 · 18 评论 -
【自动驾驶】PID实现轨迹跟踪 | python实现 | C++实现
文章目录参考资料1. PID控制原理1.1 基本概念1.2 数字 PID 控制算法1. 位置式PIDpython代码实现2. 增量式PIDpython代码实现2. 车辆横向跟踪误差参考资料轨迹跟踪PID控制PID控制概述1. PID控制原理1.1 基本概念PID( Proportional Integral Derivative)是工业应用最为广泛 的控制器。学习过控制理论的同学对它一定不陌生(毕竟调参这事可以记一辈子呢~~)。PID控制器(比例-积分-微分控制器),由比例单元(Propo原创 2022-05-17 22:36:25 · 19518 阅读 · 27 评论 -
【自动驾驶】学习卡尔曼滤波(三)——无迹卡尔曼滤波
文章目录参考资料参考资料无损卡尔曼滤波卡尔曼滤波卡尔曼滤波算法原理文章大部分内容是根据参考资料整理所得,旨在于更方便学习记忆查找,不作其他用途。在上一篇整理总结了扩展卡尔曼滤波。扩展卡尔曼滤波通过一阶泰勒展开得到近似的线性状态转移矩阵与观测矩阵。EKF的一个最大的问题就是求解雅可比矩阵计算量比较大,因此这里再介绍另一种可用于非线性系统的卡尔曼滤波——无迹卡尔曼滤波(Unscented Kalman Filter,UKF)。...原创 2022-05-12 14:11:01 · 7833 阅读 · 2 评论 -
【自动驾驶】学习卡尔曼滤波(二)——扩展卡尔曼滤波
文章目录参考资料1. 基本概念1.1 线性化过程——雅可比矩阵1.2 预测1.3 更新2. 无人车应用参考资料如何使用卡尔曼滤波(Kalman Filtering)实现对物体运动轨迹的预测?卡尔曼滤波与目标追踪卡尔曼滤波算法原理文章大部分内容是根据参考资料整理所得,旨在于更方便学习记忆查找,不作其他用途。在上一篇整理总结了基本的卡尔曼滤波后,这一章来学习扩展卡尔曼滤波(EKF),由于许多符号在上一篇中已经说明,所以本篇讲解中不再赘述。1. 基本概念如下式,当状态转移矩阵(过程模型)原创 2022-05-06 21:22:24 · 1465 阅读 · 0 评论 -
【自动驾驶】学习卡尔曼滤波(一)——线性卡尔曼滤波
文章目录参考资料1. 基本概念1.1 先验概率和后验概率1.2 贝叶斯公式2. 卡尔曼滤波推导参考资料如何使用卡尔曼滤波(Kalman Filtering)实现对物体运动轨迹的预测?卡尔曼滤波与目标追踪1. 基本概念卡尔曼滤波(Kalman filtering, KF)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列中预测出物体的坐标位置及速度。在很多工程应用(雷达、计算机视觉)中都原创 2022-05-06 10:48:30 · 4960 阅读 · 2 评论 -
【自动驾驶】模型预测控制(MPC)实现轨迹跟踪
文章目录参考资料1. 基本概念MPC vs PIDMPC vs optimal controlMPC优点2. MPC整体流程预测区间与控制区间约束MPC流程参考资料bilibili的DR_CAN讲解的MPC模型预测控制器知乎上一个比较通俗易懂的解释模型预测控制轨迹跟踪模型预测控制(MPC)原理与python实现DR_CAN笔记MPCMPC控制笔记1. 基本概念模型预测控制(MPC)的核心思想就是以优化方法求解最优控制器,其中优化方法大多时候采用二次规划(Quadratic Prog原创 2022-05-04 15:01:32 · 38741 阅读 · 58 评论 -
【控制理论】离散及连续的LQR控制算法原理推导
文章目录参考资料1. 全状态反馈控制系统2. LQR控制器Q、R矩阵的选取推导过程小结2. model based RL下的LQR离散统动力学模型下的LQR求解思路动力学模型不确定时3. iLQR参考资料https://www.bilibili.com/video/BV1RW411q7FD?spm_id_from=333.999.0.0https://zhuanlan.zhihu.com/p/455628491https://jonathan-hui.medium.com/rl-lqr-ilqr原创 2022-05-02 22:55:55 · 15837 阅读 · 8 评论