8.3 Convex combinations (凸组合)

本文为《Linear algebra and its applications》的读书笔记

Convex combinations

在这里插入图片描述

convex hull: 凸包

The convex hull of a single point v 1 \boldsymbol v_1 v1 is just the set { v 1 } \{\boldsymbol v_1\} {v1}, the same as the affine hull. In other cases, the convex hull is properly contained in the affine hull. Recall that the affine hull of distinct points v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2 is the line

在这里插入图片描述
Because the weights in a convex combination are nonnegative, the points in c o n v { v 1 , v 2 } conv\{\boldsymbol v_1,\boldsymbol v_2\} conv{v1,v2} is the line segment between v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2, hereafter denoted by v 1 v 2 ‾ \overline{\boldsymbol v_1\boldsymbol v_2} v1v2.

If a set S S S is affinely independent and if p ∈ a f f S \boldsymbol p\in aff S paffS, then p ∈ c o n v S \boldsymbol p\in conv S pconvS if and only if the barycentric coordinates of p \boldsymbol p p are nonnegative.

Example 1 shows a special situation in which S S S is much more than just affinely independent.

EXAMPLE 1
Let

在这里插入图片描述

and S = { v 1 , v 2 , v 3 } S=\{\boldsymbol v_1,\boldsymbol v_2,\boldsymbol v_3\} S={v1,v2,v3}. Note that S S S is an orthogonal set. Determine whether p 1 \boldsymbol p_1 p1 is in S p a n S Span S SpanS, a f f S aff S affS, and c o n v S conv S convS.
SOLUTION
Let W W W be the subspace spanned by S S S.

在这里插入图片描述
The orthogonal projection of p 1 \boldsymbol p_1 p1 onto W W W is p 1 \boldsymbol p_1 p1 itself: This shows that p 1 \boldsymbol p_1 p1 is in S p a n S Span S SpanS. Also, since the coefficients sum to 1, p 1 \boldsymbol p_1 p1 is in a f f S aff S affS. In fact, p 1 \boldsymbol p_1 p1 is in c o n v S conv S convS, because the coefficients are also nonnegative.


Recall that a set S S S is affine if it contains all lines determined by pairs of points in S S S. When attention is restricted to convex combinations, the appropriate condition involves line segments rather than lines.

在这里插入图片描述
Intuitively, a set S S S is convex if every two points in the set can “see” each other without the line of sight leaving the set. Figure 1 illustrates this idea.

在这里插入图片描述
在这里插入图片描述
PROOF
The argument is similar to the proof of Theorem 2.


The intersection of any collection of subspaces is itself a subspace. A similar result holds for affine sets and convex sets.

在这里插入图片描述

在这里插入图片描述
PROOF
Let T T T denote the intersection of all the convex sets containing S S S. Since c o n v S conv S convS is a convex set containing S S S, it follows that T ⊂ c o n v S T\subset conv S TconvS. On the other hand, let C C C be any convex set containing S S S. Then C C C contains every convex combination of points of C C C, and hence also contains every convex combination of points of the subset S S S. That is, c o n v S ⊂ C conv S \subset C convSC. Since this is true for every convex set C C C containing S S S, it is also true for the intersection of them all. That is, c o n v S ⊂ T conv S\subset T convST .

Theorem 9 shows that c o n v S conv S convS is in a natural sense the “smallest” convex set containing S S S. For example, consider a set S S S that lies inside some large rectangle in R 2 \R^2 R2, and imagine stretching a rubber band around the outside of S S S. As the rubber band contracts around S S S, it outlines the boundary of the convex hull of S S S. Or to use another analogy, the convex hull of S S S fills in all the holes in the inside of S S S and fills out all the dents in the boundary of S S S.

EXAMPLE 2
a. The convex hulls of sets S S S and T T T in R 2 \R^2 R2 are shown below.

在这里插入图片描述
b. Let S S S be the set consisting of the standard basis for R 3 \R^3 R3, S = { e 1 , e 2 , e 3 } S=\{\boldsymbol e_1,\boldsymbol e_2,\boldsymbol e_3\} S={e1,e2,e3}. Then c o n v S conv S convS is a triangular surface in R 3 \R^3 R3, with vertices e 1 \boldsymbol e_1 e1, e 2 \boldsymbol e_2 e2, and e 3 \boldsymbol e_3 e3. See Figure 2.

在这里插入图片描述
EXAMPLE 3
Let

在这里插入图片描述
Show that the convex hull of S S S is

在这里插入图片描述
See Figure 3.

在这里插入图片描述
SOLUTION
Consider any point p \boldsymbol p p in the shaded region of Figure 3, say

在这里插入图片描述
The line through 0 \boldsymbol 0 0 and p \boldsymbol p p has the equation y = ( b / a ) t y =(b/a)t y=(b/a)t for t t t real. That line intersects S S S where t t t satisfies ( b / a ) t = t 2 (b/a)t=t^2 (b/a)t=t2, that is, when t = b / a t= b/a t=b/a. Thus, p \boldsymbol p p is on the line segment from 0 \boldsymbol 0 0 to [ b / a b 2 / a 2 ] \begin{bmatrix}b/a\\ b^2/a^2\end{bmatrix} [b/ab2/a2], which shows that Figure 3 is correct.


The following theorem is basic in the study of convex sets. It was first proved by Constantin Caratheodory in 1907. If p \boldsymbol p p is in the convex hull of S S S, then, by definition, p \boldsymbol p p must be a convex combination of points of S S S. But the definition makes no stipulation(规定) as to how many points of S S S are required to make the combination. Caratheodory’s remarkable theorem says that in an n n n-dimensional space, the number of points of S S S in the convex combination never has to be more than n + 1 n+ 1 n+1.

在这里插入图片描述
PROOF
Given p \boldsymbol p p in c o n v S conv S convS, one may write p = c 1 v 1 + . . . + c k v k \boldsymbol p = c_1\boldsymbol v_1+...+c_k\boldsymbol v_k p=c1v1+...+ckvk, where v i ∈ S \boldsymbol v_i\in S viS, c 1 + . . . + c k = 1 c_1+...+ c_k= 1 c1+...+ck=1, and c i ≥ 0 c_i\geq 0 ci0, for some k k k and i = 1 , . . . , k i=1,..., k i=1,...,k. The goal is to show that such an expression exists for p \boldsymbol p p with k ≤ n + 1 k\leq n + 1 kn+1.

If k > n + 1 k > n + 1 k>n+1, then { v 1 , . . . , v k } \{\boldsymbol v_1,...,\boldsymbol v_k\} {v1,...,vk} is affinely dependent, by Exercise 12 in Section 8.2. Thus there exist scalars d 1 , . . . , d k d_1,..., d_k d1,...,dk, not all zero, such that

在这里插入图片描述
Consider the two equations

在这里插入图片描述

and

在这里插入图片描述

By subtracting an appropriate multiple of the second equation from the first, we now eliminate one of the v i \boldsymbol v_i vi terms and obtain a convex combination of fewer than k k k elements of S S S that is equal to p \boldsymbol p p.

Since not all of the d i d_i di coefficients are zero, we may assume (by reordering subscripts if if necessary) that d k > 0 d_k > 0 dk>0 and that c k / d k ≤ c i / d i c_k/d_k\leq c_i/d_i ck/dkci/di for all those i i i for which d i > 0 d_i > 0 di>0. For i = 1 , . . . , k i= 1,..., k i=1,...,k, let b i = c i − ( c k / d k ) d i b_i=c_i-(c_k/d_k)d_i bi=ci(ck/dk)di . Then b k = 0 b_k= 0 bk=0 and

在这里插入图片描述

Furthermore, each b i ≥ 0 b_i\geq 0 bi0. Indeed, if d i ≤ 0 d_i\leq 0 di0, then b i ≥ c i ≥ 0 b_i\geq c_i\geq 0 bici0. If d i > 0 d_i > 0 di>0, then b i = d i ( c i / d i − c k / d k ) ≥ 0 b_i=d_i(c_i/d_i-c_k/d_k)\geq 0 bi=di(ci/dick/dk)0. By construction,

在这里插入图片描述

Thus p \boldsymbol p p is now a convex combination of k − 1 k- 1 k1 of the points v 1 , . . . , v k \boldsymbol v_1,...,\boldsymbol v_k v1,...,vk. This process may be repeated until p \boldsymbol p p is expressed as a convex combination of at most n + 1 n+1 n+1 of the points of S S S.

The following example illustrates the calculations in the proof above.

EXAMPLE 4
Let

在这里插入图片描述
and S = { v 1 , v 2 , v 3 , v 4 } S=\{\boldsymbol v_1,\boldsymbol v_2,\boldsymbol v_3,\boldsymbol v_4\} S={v1,v2,v3,v4}. Then

在这里插入图片描述
Use the procedure in the proof of Caratheodory’s Theorem to express p \boldsymbol p p as a convex combination of three points of S S S.
SOLUTION
The set S S S is affinely dependent. Use the technique of Section 8.2 to obtain an affine dependence relation

在这里插入图片描述
Next, choose the points v 2 \boldsymbol v_2 v2 and v 4 \boldsymbol v_4 v4 in (3), whose coefficients are positive. For each point, compute the ratio of the coefficients in equations (2) and (3). The ratio for v 2 \boldsymbol v_2 v2 is 1 / 24 1/24 1/24, and that for v 4 \boldsymbol v_4 v4 is 1 / 48 1/48 1/48. The ratio for v 4 \boldsymbol v_4 v4 is smaller, so subtract 1 / 48 1/48 1/48 times equation (3) from equation (2) to eliminate v 4 \boldsymbol v_4 v4:

在这里插入图片描述

This result cannot, in general, be improved by decreasing the required number of points. Indeed, given any three non-collinear points in R 2 \R^2 R2, the centroid(质心) of the triangle formed by them is in the convex hull of all three, but is not in the convex hull of any two.

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值