优化基础(二):线性组合、仿射组合、锥组合、凸组合、线性集合、仿射集合、锥集合、凸集合的理解

前言

组合侧重于描述由一些基点生成新的点,强调的是不同点的权重和几何位置。
集合侧重于描述许多个点形成的形状,强调的是完整性和连通性。

组合

在这里插入图片描述

线性组合 (linear combination)

S S S是一向量空间 V V V的子集合,如果存在有限多个向量属于 S S S,和对应的标量 a 1 , a 2 , . . . , a n ∈ F a_1, a_2, ...,a_n \in F a1,a2,...,anF,使得:
v = ∑ i = 1 n a i v i = a 1 v 1 + a 2 v 2 + . . . + a n v n v =\sum_{i=1}^{n}a_iv_i= a_1v_1+a_2v_2+...+a_nv_n v=i=1naivi=a1v1+a2v2+...+anvn
我们称 v v v ( v 1 , . . . , v n ) (v_1,..., v_n) (v1,...,vn)的线性组合。

在二维空间里,如果对 α n \alpha_n αn没有任何限制的话, a 1 v 1 + a 2 v 2 + . . . + a n v n a_1v_1+a_2v_2+...+a_nv_n a1v1+a2v2+...+anvn可以扩散出整个空间。

仿射组合 (affine combination)

在上面线性组合的定义中,如果
∑ i = 1 n a i = 1 \sum_{i=1}^{n}a_i=1 i=1nai=1
我们则称 v v v ( v 1 , . . . , v n ) (v_1,..., v_n) (v1,...,vn)的仿射组合。

在二维空间里,仿射组合可以看作一条经过两个点的直线(两端可以无限延伸)。

锥组合 (conic combination)

在上面线性组合的定义中,如果
a i ≥ 1 a_i \geq 1 ai1
我们则称 v v v ( v 1 , . . . , v n ) (v_1,..., v_n) (v1,...,vn)的锥组合。像个冰淇淋🍦一样。

在二维空间里,可以想象是从一条原点出发的射线区域。

凸组合 (convex combination)

在上面线性组合的定义中,如果
a i ≥ 1 ,且 ∑ i = 1 n a i = 1 a_i \geq 1,且 \sum_{i=1}^{n}a_i=1 ai1,且i=1nai=1
我们则称 v v v ( v 1 , . . . , v n ) (v_1,..., v_n) (v1,...,vn)的凸组合,可以看到凸组合的要求是最严格的,相当于是锥组合和仿射组合的交集。

在二维空间里,凸组合可以看作一条经过两个点的线段。

集合

仿射集合

仿射集合里任意两点的连线仍然在集合里。

凸集合

凸集合里任意两点的线段都在集合里。比如一个圆形,就是一个凸集合,但它不是一个放射集合。

练习:哪个图形是凸的,哪个是仿射的?

下面两幅图,哪个是凸的,哪个是仿射的?

  • 左图:凸的,但不是仿射的;
  • 右图:不是凸的,也不是仿射的。
    在这里插入图片描述

参考资料

  1. 线性规划 方述诚
  2. 线性组合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值