高数基础-02 极限的概念

"本文深入探讨了高等数学中的极限概念,包括数列和函数的极限定义、性质及求解方法。通过例题解析了ε-δε-deltaε​的含义、极限存在的条件及其与左右极限的关系。同时强调了极限在实际问题中的应用,如0/00/00/0和∞/∞∞/∞∞/∞型未定义表达式的处理。"
摘要由CSDN通过智能技术生成
极限的概念

高等数学公式思维导图
[该思维导图个人复习使用,如有错误,欢迎指出纠正以及交流 OAO]

数列的极限

定义 lim ⁡ n → ∞ x n = a \lim\limits_{n\rightarrow \infty}x_n=a nlimxn=a    ⟺    \iff ∀ ε > 0 , ∃ N > 0 , 当 n > N 时 , 恒 有 ∣ x n − a ∣ < ε \forall \varepsilon >0,\exists N>0,当n>N时,恒有|x_n-a|<\varepsilon ε>0,N>0,n>Nxna<ε

思考: ε \varepsilon ε意义, N N N 意义、几何意义、数列 { x n } \{x_n\} {xn}的极限与前有限项关系、数列的奇偶项极限与原数列极限关系

【定理 lim ⁡ n → ∞ x n = a    ⟺    lim ⁡ k → ∞ x 2 k − 1 = lim ⁡ k → ∞ x 2 k = a \lim\limits_{n\rightarrow\infty}x_n=a\iff\lim\limits_{k\rightarrow\infty}x_{2k-1}=\lim\limits_{k\rightarrow\infty}x_{2k}=a nlimxn=aklimx2k1=klimx2k=a

理解:几何上 ∣ x n − a ∣ |x_n-a| xna 表示两个数的接近距离, ε \varepsilon ε 的任意性能够刻画接近程度, N N N刻画 n n n ∞ \infty 靠近的过程
经典例题
【2014 数三】设 lim ⁡ n → ∞ a n = a , ( a ≠ 0 ) \lim_{n\rightarrow \infty} a_n=a,(a\neq 0) limnan=a,(a=0),则当 n n n 充分大时有,___
A . ∣ a n ∣ > ∣ a ∣ / 2 A.|a_n|>|a|/2 A.an>a/2
B . ∣ a n ∣ < ∣ a ∣ / 2 B.|a_n|<|a|/2 B.an<a/2
C . a n > a − 1 n C.a_n>a-\frac{1}{n} C.an>an1
D . a n < a + 1 n D.a_n<a+\frac{1}{n} D.an<a+n1
解析:此题对 ξ \xi ξ的任意性的理解,也是我们对极限这一概念理解的关键。
Q: 1) ξ \xi ξ的任意小性是指多小?0.01、0.00…001、0?
2. ξ \xi ξ刻画的 a n a_n an a a a的接近速度有多块? 1 n , 1 n , 1 n n , m n \frac{1}{n},\frac{1}{\sqrt{n}},\frac{1}{n^n},\frac{m}{n} n1,n 1,nn1,nm(m为常数)?
从几何上可指, ξ \xi ξ刻画任意性的接近程度,但是却没有提及,到底要有多快接近。你可以几步就跨到终点,也可以无穷步才到达终点。但是只要能够达到(无限接近)终点的,都可以算作其最后达到。
那么对于这道题C,D选项, a n a_n an也可以以 2 / n 2/n 2/n的速度去靠近 a a a,或者以 − 2 / n -2/n 2/n的速度靠近 a a a.因此排除CD后便容易选择出正确的答案为A。

【例】 lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n \lim\limits_{n\rightarrow \infty}\left(\frac{n+1}{n}\right)^{{(-1)}^n} nlim(nn+1)(1)n 【解法:夹逼准则、奇偶项极限】

【例2】

lim ⁡ n → ∞ x n = a , \lim\limits_{n\rightarrow \infty}x_n=a, nlimxn=a, lim ⁡ n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\rightarrow \infty}|x_n|=|a| nlimxn=a, 但反之不成立
解法:引入 ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\leq|a-b| abab,经典反例: x n = ( − 1 ) n x_n=(-1)^n xn=(1)n

lim ⁡ n → ∞ x n = a \lim\limits_{n\rightarrow \infty}x_n=a nlimxn=a 的充要条件为 lim ⁡ n → ∞ ∣ x n ∣ = a \lim\limits_{n\rightarrow \infty}|x_n|=a nlimxn=a
【解法:利用定义 ∀ ε > 0 , ∃ N > 0 , \forall \varepsilon >0,\exists N>0, ε>0,N>0, n > N n>N n>N , , 恒有 ∣ x n − a ∣ < ε |x_n-a|<\varepsilon xna<ε

函数的极限

定义 lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\rightarrow \infty}f(x)=A xlimf(x)=A    ⟺    \iff ∀ ε > 0 , ∃ X > 0 , \forall \varepsilon >0,\exists X>0, ε>0,X>0, ∣ x ∣ > X |x|>X x>X 时,恒有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε

定理1 lim ⁡ x → ∞ f ( x ) = a    ⟺    lim ⁡ x → − ∞ f ( x ) = lim ⁡ x → + ∞ f ( x ) = a \lim\limits_{x\rightarrow\infty}f(x)=a\iff\lim\limits_{x\rightarrow-\infty}f(x)=\lim\limits_{x\rightarrow+\infty}f(x)=a xlimf(x)=axlimf(x)=x+limf(x)=a

【例3】 极限 lim ⁡ x → ∞ x 2 + 1 x \lim\limits_{x\rightarrow\infty}\frac{\sqrt{x^2+1}}{x} xlimxx2+1 h i n t : x = ∣ x ∣ hint:\sqrt{x}=|x| hint:x =x

定义5 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\rightarrow x_0}f(x)=A xx0limf(x)=A 自变量趋于有限值时函数的极限

∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0,\exists \delta>0 ε>0,δ>0 ,当 ∣ x − x 0 ∣ < δ |x-x_0|<\delta xx0<δ ,恒有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε 【注:对于分段函数, f ( x ) f(x) f(x) 可能不等于 f ( x 0 ) f(x_0) f(x0)

【思考 ( 1 ) ε (1)\varepsilon 1ε 的任意性, ε \varepsilon ε δ \delta δ 的作用;

( 2 ) (2) 2几何意义
( 3 ) x → x 0 , (3)x\rightarrow x_0, 3xx0, x ≠ x 0 x\neq x_0 x=x0 ,而 f ( x ) f(x) f(x) 可以趋近于 A A A 或等于 A A A

( 4 ) (4) 4与无限小数性质的对比】

例题 lim ⁡ x → 0 s i n ( x s i n 1 x ) x s i n 1 x \lim\limits_{x\rightarrow 0}\frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} x0limxsinx1sin(xsinx1) 是否存在极限

【注意极限定义,由于 x s i n 1 x xsin\frac{1}{x} xsinx1在趋近于0的过程中,周期性的存在等于0的情况

而等于0时函数没有意义,此时即没有极限。即不存在 δ \delta δ ,恒有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε 的情况】

思考 lim ⁡ u → u 0 f ( u ) = A , lim ⁡ x → x 0 φ ( x ) = u 0 \lim\limits_{u\rightarrow u_0}f(u)=A,\lim\limits_{x\rightarrow x_0}\varphi(x)=u_0 uu0limf(u)=A,xx0limφ(x)=u0 此时 lim ⁡ x → x 0 f ( φ ( x ) ) \lim\limits_{x\rightarrow x_0}f(\varphi(x)) xx0limf(φ(x)) 是否等于 A A A?

【这里相当于考察复合函数和极限两个部分的性质,由于函数极限能够等于或这趋近于某值,而变量则是只趋近于某值,所以必须在 lim ⁡ x → x 0 φ ( x ) = u 0 且 φ ( x ) ≠ u 0 \lim\limits_{x\rightarrow x_0}\varphi(x)=u_0且\varphi(x)\neq u_0 xx0limφ(x)=u0φ(x)=u0时,即导致符合 u → u 0 u\rightarrow u_0 uu0的过程,而不等于 u 0 u_0 u0才能得到值 A A A

左右极限

左极限 lim ⁡ x → x 0 − f ( x ) = f ( x 0 − ) = f ( x 0 − 0 ) \lim\limits_{x\rightarrow x_0^-}f(x)=f(x_0^-)=f(x_0-0) xx0limf(x)=f(x0)=f(x00)

右极限 lim ⁡ x → x 0 + f ( x ) = f ( x 0 + ) = f ( x 0 + 0 ) \lim\limits_{x\rightarrow x_0^+}f(x)=f(x_0^+)=f(x_0+0) xx0+limf(x)=f(x0+)=f(x0+0)

定理2 极限存在充要条件 lim ⁡ x → x 0 f ( x ) = A    ⟺    lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\rightarrow x_0}f(x)=A\iff \lim\limits_{x\rightarrow x_0^-}f(x)=\lim\limits_{x\rightarrow x_0^+}f(x)=A xx0limf(x)=Axx0limf(x)=xx0+limf(x)=A 【重点*】

例4 当 x → 1 时 , x 2 − 1 x − 1 e 1 x − 1 当x\rightarrow 1时,\frac{x^2-1}{x-1}e^{\frac{1}{x-1}} x1x1x21ex11 的极限 【 x 2 − 1 x − 1 \frac{x^2-1}{x-1} x1x21 x → 1 x\rightarrow1 x1 0 0 \frac{0}{0} 00 型,化简为 2 2 2,讨论 x x x 趋近 1 1 1 的左右极限。结果 极限不存在但不为 ∞ \infty

【注意区分 极限存在和极限值之间的区别】

常见左右极限讨论

(1)分段函数在分界点处的极限
(2) e ∞ e^\infty e型极限【正负无穷讨论】
(3) a r c t a m ∞ arctam^\infty arctam

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值