极限的概念
高等数学公式思维导图
[该思维导图个人复习使用,如有错误,欢迎指出纠正以及交流 OAO]
数列的极限
定义 lim n → ∞ x n = a \lim\limits_{n\rightarrow \infty}x_n=a n→∞limxn=a ⟺ \iff ⟺ ∀ ε > 0 , ∃ N > 0 , 当 n > N 时 , 恒 有 ∣ x n − a ∣ < ε \forall \varepsilon >0,\exists N>0,当n>N时,恒有|x_n-a|<\varepsilon ∀ε>0,∃N>0,当n>N时,恒有∣xn−a∣<ε
思考: ε \varepsilon ε意义, N N N 意义、几何意义、数列 { x n } \{x_n\} {xn}的极限与前有限项关系、数列的奇偶项极限与原数列极限关系
【定理 lim n → ∞ x n = a ⟺ lim k → ∞ x 2 k − 1 = lim k → ∞ x 2 k = a \lim\limits_{n\rightarrow\infty}x_n=a\iff\lim\limits_{k\rightarrow\infty}x_{2k-1}=\lim\limits_{k\rightarrow\infty}x_{2k}=a n→∞limxn=a⟺k→∞limx2k−1=k→∞limx2k=a】
理解:几何上
∣
x
n
−
a
∣
|x_n-a|
∣xn−a∣ 表示两个数的接近距离,
ε
\varepsilon
ε 的任意性能够刻画接近程度,
N
N
N刻画
n
n
n 向
∞
\infty
∞靠近的过程
【经典例题】
【2014 数三】设
lim
n
→
∞
a
n
=
a
,
(
a
≠
0
)
\lim_{n\rightarrow \infty} a_n=a,(a\neq 0)
limn→∞an=a,(a=0),则当
n
n
n 充分大时有,___
A
.
∣
a
n
∣
>
∣
a
∣
/
2
A.|a_n|>|a|/2
A.∣an∣>∣a∣/2
B
.
∣
a
n
∣
<
∣
a
∣
/
2
B.|a_n|<|a|/2
B.∣an∣<∣a∣/2
C
.
a
n
>
a
−
1
n
C.a_n>a-\frac{1}{n}
C.an>a−n1
D
.
a
n
<
a
+
1
n
D.a_n<a+\frac{1}{n}
D.an<a+n1
解析:此题对
ξ
\xi
ξ的任意性的理解,也是我们对极限这一概念理解的关键。
Q: 1)
ξ
\xi
ξ的任意小性是指多小?0.01、0.00…001、0?
2.
ξ
\xi
ξ刻画的
a
n
a_n
an对
a
a
a的接近速度有多块?
1
n
,
1
n
,
1
n
n
,
m
n
\frac{1}{n},\frac{1}{\sqrt{n}},\frac{1}{n^n},\frac{m}{n}
n1,n1,nn1,nm(m为常数)?
从几何上可指,
ξ
\xi
ξ刻画任意性的接近程度,但是却没有提及,到底要有多快接近。你可以几步就跨到终点,也可以无穷步才到达终点。但是只要能够达到(无限接近)终点的,都可以算作其最后达到。
那么对于这道题C,D选项,
a
n
a_n
an也可以以
2
/
n
2/n
2/n的速度去靠近
a
a
a,或者以
−
2
/
n
-2/n
−2/n的速度靠近
a
a
a.因此排除CD后便容易选择出正确的答案为A。
【例】 lim n → ∞ ( n + 1 n ) ( − 1 ) n \lim\limits_{n\rightarrow \infty}\left(\frac{n+1}{n}\right)^{{(-1)}^n} n→∞lim(nn+1)(−1)n 【解法:夹逼准则、奇偶项极限】
【例2】
lim
n
→
∞
x
n
=
a
,
\lim\limits_{n\rightarrow \infty}x_n=a,
n→∞limxn=a, 则
lim
n
→
∞
∣
x
n
∣
=
∣
a
∣
\lim\limits_{n\rightarrow \infty}|x_n|=|a|
n→∞lim∣xn∣=∣a∣, 但反之不成立
解法:引入
∣
∣
a
∣
−
∣
b
∣
∣
≤
∣
a
−
b
∣
||a|-|b||\leq|a-b|
∣∣a∣−∣b∣∣≤∣a−b∣,经典反例:
x
n
=
(
−
1
)
n
x_n=(-1)^n
xn=(−1)n
lim
n
→
∞
x
n
=
a
\lim\limits_{n\rightarrow \infty}x_n=a
n→∞limxn=a 的充要条件为
lim
n
→
∞
∣
x
n
∣
=
a
\lim\limits_{n\rightarrow \infty}|x_n|=a
n→∞lim∣xn∣=a
【解法:利用定义
∀
ε
>
0
,
∃
N
>
0
,
\forall \varepsilon >0,\exists N>0,
∀ε>0,∃N>0,当
n
>
N
n>N
n>N 时
,
,
,恒有
∣
x
n
−
a
∣
<
ε
|x_n-a|<\varepsilon
∣xn−a∣<ε】
函数的极限
定义 lim x → ∞ f ( x ) = A \lim\limits_{x\rightarrow \infty}f(x)=A x→∞limf(x)=A ⟺ \iff ⟺ ∀ ε > 0 , ∃ X > 0 , \forall \varepsilon >0,\exists X>0, ∀ε>0,∃X>0, 当 ∣ x ∣ > X |x|>X ∣x∣>X 时,恒有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon ∣f(x)−A∣<ε
定理1 【 lim x → ∞ f ( x ) = a ⟺ lim x → − ∞ f ( x ) = lim x → + ∞ f ( x ) = a \lim\limits_{x\rightarrow\infty}f(x)=a\iff\lim\limits_{x\rightarrow-\infty}f(x)=\lim\limits_{x\rightarrow+\infty}f(x)=a x→∞limf(x)=a⟺x→−∞limf(x)=x→+∞limf(x)=a
【例3】 极限 lim x → ∞ x 2 + 1 x \lim\limits_{x\rightarrow\infty}\frac{\sqrt{x^2+1}}{x} x→∞limxx2+1 【 h i n t : x = ∣ x ∣ hint:\sqrt{x}=|x| hint:x=∣x∣】
定义5 lim x → x 0 f ( x ) = A \lim\limits_{x\rightarrow x_0}f(x)=A x→x0limf(x)=A 自变量趋于有限值时函数的极限
∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0,\exists \delta>0 ∀ε>0,∃δ>0 ,当 ∣ x − x 0 ∣ < δ |x-x_0|<\delta ∣x−x0∣<δ ,恒有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon ∣f(x)−A∣<ε 【注:对于分段函数, f ( x ) f(x) f(x) 可能不等于 f ( x 0 ) f(x_0) f(x0) 】
【思考 ( 1 ) ε (1)\varepsilon (1)ε 的任意性, ε \varepsilon ε 与 δ \delta δ 的作用;
(
2
)
(2)
(2)几何意义
(
3
)
x
→
x
0
,
(3)x\rightarrow x_0,
(3)x→x0, 但
x
≠
x
0
x\neq x_0
x=x0 ,而
f
(
x
)
f(x)
f(x) 可以趋近于
A
A
A 或等于
A
A
A
( 4 ) (4) (4)与无限小数性质的对比】
例题 lim x → 0 s i n ( x s i n 1 x ) x s i n 1 x \lim\limits_{x\rightarrow 0}\frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} x→0limxsinx1sin(xsinx1) 是否存在极限
【注意极限定义,由于 x s i n 1 x xsin\frac{1}{x} xsinx1在趋近于0的过程中,周期性的存在等于0的情况
而等于0时函数没有意义,此时即没有极限。即不存在 δ \delta δ ,恒有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon ∣f(x)−A∣<ε 的情况】
思考 若 lim u → u 0 f ( u ) = A , lim x → x 0 φ ( x ) = u 0 \lim\limits_{u\rightarrow u_0}f(u)=A,\lim\limits_{x\rightarrow x_0}\varphi(x)=u_0 u→u0limf(u)=A,x→x0limφ(x)=u0 此时 lim x → x 0 f ( φ ( x ) ) \lim\limits_{x\rightarrow x_0}f(\varphi(x)) x→x0limf(φ(x)) 是否等于 A A A?
【这里相当于考察复合函数和极限两个部分的性质,由于函数极限能够等于或这趋近于某值,而变量则是只趋近于某值,所以必须在 lim x → x 0 φ ( x ) = u 0 且 φ ( x ) ≠ u 0 \lim\limits_{x\rightarrow x_0}\varphi(x)=u_0且\varphi(x)\neq u_0 x→x0limφ(x)=u0且φ(x)=u0时,即导致符合 u → u 0 u\rightarrow u_0 u→u0的过程,而不等于 u 0 u_0 u0才能得到值 A A A】
左右极限
左极限 lim x → x 0 − f ( x ) = f ( x 0 − ) = f ( x 0 − 0 ) \lim\limits_{x\rightarrow x_0^-}f(x)=f(x_0^-)=f(x_0-0) x→x0−limf(x)=f(x0−)=f(x0−0)
右极限 lim x → x 0 + f ( x ) = f ( x 0 + ) = f ( x 0 + 0 ) \lim\limits_{x\rightarrow x_0^+}f(x)=f(x_0^+)=f(x_0+0) x→x0+limf(x)=f(x0+)=f(x0+0)
定理2 极限存在充要条件 lim x → x 0 f ( x ) = A ⟺ lim x → x 0 − f ( x ) = lim x → x 0 + f ( x ) = A \lim\limits_{x\rightarrow x_0}f(x)=A\iff \lim\limits_{x\rightarrow x_0^-}f(x)=\lim\limits_{x\rightarrow x_0^+}f(x)=A x→x0limf(x)=A⟺x→x0−limf(x)=x→x0+limf(x)=A 【重点*】
例4 求 当 x → 1 时 , x 2 − 1 x − 1 e 1 x − 1 当x\rightarrow 1时,\frac{x^2-1}{x-1}e^{\frac{1}{x-1}} 当x→1时,x−1x2−1ex−11 的极限 【 x 2 − 1 x − 1 \frac{x^2-1}{x-1} x−1x2−1 x → 1 x\rightarrow1 x→1 为 0 0 \frac{0}{0} 00 型,化简为 2 2 2,讨论 x x x 趋近 1 1 1 的左右极限。结果 极限不存在但不为 ∞ \infty ∞】
【注意区分 极限存在和极限值之间的区别】
常见左右极限讨论
(1)分段函数在分界点处的极限
(2)
e
∞
e^\infty
e∞型极限【正负无穷讨论】
(3)
a
r
c
t
a
m
∞
arctam^\infty
arctam∞