Chapter 2 (Discrete Random Variables): Probability mass functions (PMF 分布列)

  • The most important way to characterize a random variable is through the probabilities of the values that it can take. For a discrete random variable X X X, these are captured by the probability mass function (PMF for short) of X X X, denoted p X p_X pX. In particular, for any real number x x x, the probability mass of x x x. denoted p X ( x ) p_X(x) pX(x). is the probability of the event { X = x } \{X = x\} {X=x}. Thus, from the additivity and normalization axioms, we have
    ∑ x p X ( x ) = 1 \sum_{x}p_X(x)=1 xpX(x)=1
    在这里插入图片描述

In what follows, we will often omit the braces from the event/set notation when no ambiguity can arise. In particular, we will usually write P ( X = x ) P(X = x) P(X=x) in place of the more correct notation P ( { X = x } ) P(\{X = x\}) P({X=x}).

We will use upper case characters to denote random variables, and lower case characters to denote real numbers such as the numerical values of a random variable.

The Bernoulli Random Variable (伯努利随机变量)

  • Consider the toss of a coin, which comes up a head with probability p p p, and a tail with probability 1 − p 1 - p 1p. The Bernoulli random variable takes the two values 1 and 0, depending on whether the outcome is a head or a tail:
    在这里插入图片描述
    Its PMF is
    在这里插入图片描述

The Binomial Random Variable

  • A coin is tossed n n n times. At each toss, the coin comes up a head with probability p p p, and a tail with probability 1 − p 1 - p 1p, independent of prior tosses. Let X X X be the number of heads in the n n n-toss sequence. We refer to X X X as a binomial random variable with parameters n n n and p p p. The PMF of X X X consists of the binomial probabilities:
    p X ( k ) = P ( X = k ) = ( n k ) p k ( 1 − p ) n − k , k = 0 , 1 , . . . , n . p_X(k) = P(X = k) =\begin{pmatrix}n\\k \end{pmatrix}p^k(1-p)^{n-k},k = 0, 1, ... , n. pX(k)=P(X=k)=(nk)pk(1p)nk,k=0,1,...,n.The normalization property, specialized to the binomial random variable, is written as
    ∑ k = 0 n ( n k ) p k ( 1 − p ) n − k = 1 \sum_{k=0}^n\begin{pmatrix}n\\k \end{pmatrix}p^k(1-p)^{n-k}=1 k=0n(nk)pk(1p)nk=1

Form of the binomial PMF.

  • Let k ∗ = ⌊ ( n + 1 ) p ⌋ k^*=\lfloor (n + 1)p\rfloor k=(n+1)p. The PMF p X ( k ) p_X(k) pX(k) is monotonically nondecreasing with k k k in the range from 0 0 0 to k ∗ k^* k. and is monotonically decreasing with k k k for k ≥ k ∗ k\geq k^* kk.
    ( p X ( k ) p X ( k − 1 ) = ( n + 1 ) p − k p k − k p ) (\frac{p_X(k)}{p_X(k-1)}=\frac{(n+1)p-kp}{k-kp}) (pX(k1)pX(k)=kkp(n+1)pkp)在这里插入图片描述

Problem 6.

The Celtics and the Lakers are set to play a playoff series of n n n basketball games, where n n n is odd. The Celtics have a probability p p p of winning any one game, independent of other games. For any k > 0 k > 0 k>0, find the values for p p p for which n = 2 k + 1 n = 2k + 1 n=2k+1 is better for the Celtics than n = 2 k − 1 n = 2k -1 n=2k1.

SOLUTION

  • Let N N N be the number of Celtics’ wins in the first 2 k − 1 2k -1 2k1 games. If A A A denotes the event that the Celtics win with n = 2 k + 1 n = 2k +1 n=2k+1, and B B B denotes the event that the Celtics win with n = 2 k − 1 n = 2k-1 n=2k1, then
    P ( A ) = P ( N ≥ k + 1 ) + P ( N = k ) ⋅ ( 1 − ( 1 − p ) 2 ) + P ( N = k − 1 ) ⋅ p 2 P ( B ) = P ( N ≥ k ) = P ( N = k ) + P ( N ≥ k + 1 ) P(A)=P(N\geq k+1)+P(N=k)\cdot(1-(1-p)^2)+P(N=k-1)\cdot p^2\\ P(B)=P(N\geq k)=P(N=k)+P(N\geq k+1) P(A)=P(Nk+1)+P(N=k)(1(1p)2)+P(N=k1)p2P(B)=P(Nk)=P(N=k)+P(Nk+1)and therefore
    P ( A ) − P ( B ) = P ( N = k − 1 ) ⋅ p 2 − P ( N = k ) ⋅ ( 1 − p ) 2 = ( 2 k − 1 ) ! ( k − 1 ) ! k ! p k ( 1 − p ) k ( 2 p − 1 ) \begin{aligned}P(A)-P(B)&=P(N=k-1)\cdot p^2-P(N=k)\cdot (1-p)^2\\&=\frac{(2k-1)!}{(k-1)!k!}p^k(1-p)^k(2p-1)\end{aligned} P(A)P(B)=P(N=k1)p2P(N=k)(1p)2=(k1)!k!(2k1)!pk(1p)k(2p1)It follows that P ( A ) > P ( B ) P(A) > P(B) P(A)>P(B) if and only if p > 1 2 p > \frac{1}{2} p>21. Thus, a longer series is better for the better team.

The Geometric Random Variable

几何随机变量

  • Suppose that we repeatedly and independently toss a coin with probability of a head equal to p p p, where 0 < p < 1 0 < p < 1 0<p<1. The geometric random variable is the number X X X of tosses needed for a head to come up for the first time. Its PMF is given by
    p X ( k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , . . . , p_X(k)=(1-p)^{k-1}p,k=1,2,..., pX(k)=(1p)k1p,k=1,2,...,
  • More generally, we can interpret the geometric random variable in terms of repeated independent trials until the first “success.”
    在这里插入图片描述

The Poisson Random Variable

泊松随机变量

  • A Poisson random variable has a PMF given by
    p X ( k ) = e − λ λ k k ! ,          k = 0 , 1 , 2 , . . . , p_X(k)=e^{-\lambda}\frac{\lambda^k}{k!},\ \ \ \ \ \ \ \ k=0,1,2,..., pX(k)=eλk!λk,        k=0,1,2,...,where λ \lambda λ is a positive parameter characterizing the PMF. This is a legitimate PMF because
    ∑ k = 0 ∞ e − λ λ k k ! = e − λ e λ = 1 \sum_{k=0}^\infty e^{-\lambda}\frac{\lambda^k}{k!}=e^{-\lambda}e^{\lambda}=1 k=0eλk!λk=eλeλ=1

Form of the Poisson PMF.

  • The PMF p X ( k ) p_X(k) pX(k) increases monotonically with k k k up to the point where k k k reaches the largest integer not exceeding λ \lambda λ, and after that point decreases monotonically with k k k.
    ( p X ( k ) p X ( k − 1 ) = λ k ) (\frac{p_X(k)}{p_X(k-1)}=\frac{\lambda}{k}) (pX(k1)pX(k)=kλ)在这里插入图片描述

Poisson approximation property

  • The Poisson PMF with parameter λ \lambda λ is a good approximation for a binomial PMF with parameters n n n and p p p. i.e …
    e − λ λ k k ! ≈ n ! k ! ( n − k ) ! p k ( 1 − p ) n − k ,          i f   k ≪ n e^{-\lambda}\frac{\lambda^k}{k!}\approx \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k},\ \ \ \ \ \ \ \ if\ k\ll n eλk!λkk!(nk)!n!pk(1p)nk,        if knprovided λ = n p \boldsymbol{\lambda= np} λ=np. n n n is very large, and p p p is very small. In this case. using the Poisson PMF may result in simpler models and calculations.
    • For example. let n = 100 n = 100 n=100 and p = 0.01 p = 0.01 p=0.01. Then the probability of k = 5 k = 5 k=5 successes in n = 100 n = 100 n=100 trials is calculated using the binomial PMF as 0.00290 0.00290 0.00290. Using the Poisson PMF with λ = n p = 100 ⋅ 0.01 = 1 \lambda= np = 100\cdot0.01 = 1 λ=np=1000.01=1. this probability is approximated by 0.00306 0.00306 0.00306.
  • Proof: Consider the PMF of a binomial random variable with parameters n → ∞ n\rightarrow\infty n and p → 0 p\rightarrow0 p0 while n p np np is fixed at a given value λ \lambda λ
    p X ( k ) = n ! ( n − k ) ! k ! p k ( 1 − p ) n − k = n ( n − 1 ) . . . ( n − k + 1 ) n k λ k k ! ( 1 − λ n ) n − k n − k + j n → 1 , ( 1 − λ n ) k → 1 , ( 1 − λ n ) n → e − λ p_X(k)=\frac{n!}{(n-k)!k!}p^k(1-p)^{n-k}=\frac{n(n-1)...(n-k+1)}{n^k}\frac{\lambda^k}{k!}(1-\frac{\lambda}{n})^{n-k}\\ \frac{n-k+j}{n}\rightarrow1,(1-\frac{\lambda}{n})^{k}\rightarrow1,(1-\frac{\lambda}{n})^{n}\rightarrow e^{-\lambda} pX(k)=(nk)!k!n!pk(1p)nk=nkn(n1)...(nk+1)k!λk(1nλ)nknnk+j1,(1nλ)k1,(1nλ)neλThus, for each fixed k k k, as n → ∞ n\rightarrow\infty n we obtain
    p X ( k ) → e − λ λ k k ! p_X(k)\rightarrow e^{-\lambda}\frac{\lambda^k}{k!} pX(k)eλk!λk

Functions of Random Variables

  • Given a random variable X X X, one may generate other random variables by applying various transformations on X X X. If Y = g ( X ) Y = g(X) Y=g(X) is a function of a random variable X X X, then Y Y Y is also a random variable, since it provides a numerical value for each possible outcome.
  • If X X X is discrete with PMF p X p_X pX. then Y Y Y is also discrete, and its PMF p Y p_Y pY can be calculated using the PMF of X X X.
    p Y ( y ) = ∑ { x ∣ g ( x ) = y } p X ( x ) p_Y(y)=\sum_{\{x|g(x)=y\}}p_X(x) pY(y)={xg(x)=y}pX(x)
    在这里插入图片描述

References

  • I n t r o d u c t i o n Introduction Introduction t o to to P r o b a b i l i t y Probability Probability
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值