【矩阵论】0.准备知识

λ \lambda λ 矩阵的标准形 Jordan标准形

元素为常数的矩阵为数字矩阵。

定义 1.1 元素为 λ \lambda λ 的多项式的矩阵称为 λ \lambda λ 矩阵 A ( λ ) A(\lambda) A(λ) A ( λ ) A(\lambda) A(λ) 所有元素的最高次数为 A ( λ ) A(\lambda) A(λ) 的次数,
m m m λ \lambda λ 矩阵 A ( λ ) A(\lambda) A(λ) 可表示为 A ( λ ) = λ m A 0 + λ m − 1 A 1 + ⋯ + λ A m − 1 + A m A(\lambda)=\lambda^mA_0+\lambda^{m-1}A_1+\cdots+\lambda A_{m-1}+A_m A(λ)=λmA0+λm1A1++λAm1+Am( A i ( i = 0 , 1 , … , m ) A_i(i=0,1,\ldots,m) Ai(i=0,1,,m) 是数字矩阵,且 A 0 ≠ 0 A_0\neq0 A0=0 .)

秩、可逆的充要条件、三类初等变换和初等阵、等价的充要条件同理。

定义 1.2 λ \lambda λ A ( λ ) A(\lambda) A(λ) 不恒为零的子式的最高阶数称为 A ( λ ) A(\lambda) A(λ),记作 r a n k \mathrm{rank} rank A ( λ ) . A(\lambda). A(λ).

例 1.3 A A A n n n 阶数字方阵,则 ∣ λ E − A ∣ |\lambda E-A| λEA λ \lambda λ n n n 次多项式 . 因此 λ E − A \lambda E-A λEA 的秩为 n n n 。也就是说,不论数字方阵 A A A 是否满秩,它的特征矩阵 λ E − A \lambda E-A λEA 总是满秩的。

定义 1.4 A ( λ ) A(\lambda) A(λ) λ \lambda λ 阵,若存在 λ \lambda λ B ( λ ) B(\lambda) B(λ) , 使 A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = E A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=E A(λ)B(λ)=B(λ)A(λ)=E , 则称 A ( λ ) A(\lambda) A(λ)可逆的,并且 B ( λ ) B(\lambda) B(λ) 称为 A ( λ ) A(λ) A(λ)逆矩阵,记作 A ( λ ) − 1 . A(λ)^{-1}. A(λ)1.

显然,如果 A ( λ ) A(\lambda) A(λ) 是可逆的,那么 A ( λ ) A(λ) A(λ) 的逆矩阵必定唯一 . 事实上,假如 B 1 ( λ ) B_1(λ) B1(λ) B 2 ( λ ) B_2(λ) B2(λ) 两个矩阵都是可逆 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的逆矩阵,那么 B 1 ( λ ) = B 1 ( λ ) [ A ( λ ) B 2 ( λ ) ] = [ B 1 ( λ ) A ( λ ) ] B 2 ( λ ) = B 2 ( λ ) . B_1(\lambda)=B_1(\lambda)\begin{bmatrix}A(\lambda)B_2(\lambda)\end{bmatrix}=\begin{bmatrix}B_1(\lambda)A(\lambda)\end{bmatrix}B_2(\lambda)=B_2(\lambda). B1(λ)=B1(λ)[A(λ)B2(λ)]=[B1(λ)A(λ)]B2(λ)=B2(λ).

定理 1.5 λ \lambda λ A ( λ ) A(\lambda) A(λ) 是可逆的充分必要条件是 ∣ A ( λ ) ∣ |A(\lambda)| A(λ) 为非零常数.

证明 记 A ( λ ) ∗ A(\lambda)^* A(λ) A ( λ ) A(\lambda) A(λ) 的伴随矩阵 . 若 ∣ A ( λ ) ∣ |A(\lambda)| A(λ) 为非零常数 c c c , 则 A − 1 ( λ ) = 1 ∣ A ( λ ) ∣ A ( λ ) ∗ = 1 c A ( λ ) ∗ A^{-1}(\lambda)=\frac{1}{\mid A(\lambda)\mid}A(\lambda)^{*}=\frac{1}{c}A(\lambda)^{*} A1(λ)=A(λ)1A(λ)=c1A(λ) 也是 λ \lambda λ 阵,即 A ( λ ) A(λ) A(λ) 可逆 . 反之,若 A ( λ ) A(λ) A(λ) 可逆,即存在 λ λ λ A − 1 ( λ ) A^{-1}(λ) A1(λ) 使 A ( λ ) A − 1 ( λ ) = E . A(λ)A^{-1}(λ)=E. A(λ)A1(λ)=E. 于是 ∣ A ( λ ) ∣ ∣ A − 1 ( λ ) ∣ = 1. |\boldsymbol{A}(\lambda)||\boldsymbol{A}^{-1}(\lambda)|=1. A(λ)∣∣A1(λ)=1. ∣ A ( λ ) ∣ |\boldsymbol{A}(\lambda)| A(λ) ∣ A − 1 ( λ ) ∣ |\boldsymbol{A}^{-1}(\lambda)| A1(λ) 均是 λ \lambda λ 的多项式,比较等式两边多项式的次数,表明 ∣ A ( λ ) ∣ |A(\lambda)| A(λ) 是非零常数 .

这里的 ∣ A ( λ ) ∣ |\boldsymbol{A}(\lambda)| A(λ) 是非零常数也就是说 ∣ A ( λ ) ∣ |\boldsymbol{A}(\lambda)| A(λ) 是零次多项式.

定义 1.6 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的三类初等变换定义如下:

  1. 对换 i , j i,j i,j 两行(列) , 记作 r i ↔ r j ( c i ↔ c j ) r_i\leftrightarrow r_j ( c_i\leftrightarrow c_j) rirj(cicj),
  2. i i i 行(列)乘非零数 k k k , 记作 r i × k ( c i × k ) r_i\times k(c_i\times k) ri×k(ci×k) ,
  3. i i i 行(列)加上第 j j j 行(列)的 k ( λ ) k(\lambda) k(λ) 倍,记作 r i + k ( λ ) r j ( c i + k ( λ ) c j ) r_i+k(\lambda)r_j(c_i+k(\lambda)c_j) ri+k(λ)rj(ci+k(λ)cj) , 其中 k ( λ ) k(\lambda) k(λ) λ \lambda λ 的多项式。

定义 1.7 三类初等 λ \lambda λ 阵定义如下。

  1. 把单位阵 E E E 对换第 i , j i,j i,j 两行所得矩阵,记作 E ( i , j ) . E(i,j). E(i,j).
  2. 把单位阵 E E E 的第 i i i 行乘非零数 k k k 所得矩阵,记作 E ( i ( k ) ) . E(i(k)). E(i(k)).
  3. 把单位阵 E E E 的第 i i i 行加上第 j j j 行的 k ( λ ) k(\lambda) k(λ) 倍所得矩阵,记作 E ( i , j ( k ( λ ) ) . E(i,j(k(\lambda)). E(i,j(k(λ)).

对一个 λ \lambda λ A ( λ ) \boldsymbol{A}(\lambda) A(λ) 作一次初等行变换相当于用一个对应的初等 λ \lambda λ 阵左乘 A ( λ ) \boldsymbol{A}(\lambda) A(λ) , 反过来,对 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 作一次初等列变换相当于用一个对应的初等 λ \lambda λ 阵的转置去右乘 A ( λ ) \boldsymbol{A}(\lambda) A(λ). λ \lambda λ A ( λ ) \boldsymbol{A}(\lambda) A(λ) 可逆的充分必要条件是 A ( λ ) \boldsymbol{A}(\lambda) A(λ)为有限个初等 λ \lambda λ 阵的乘积.

定义 1.8 λ \lambda λ A ( λ ) A(\lambda) A(λ) 经有限次初等变换后变成 B ( λ ) B(\lambda) B(λ) , 则称 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ) 等价 , 记作 A ( λ ) ≅ B ( λ ) A(\lambda)\cong B(\lambda) A(λ)B(λ).

定理 1.9 A ( λ ) \boldsymbol A(\lambda) A(λ) B ( λ ) \boldsymbol B(\lambda) B(λ) 均是 m × n m{\times}n m×n λ \lambda λ - 阵,则 A ( λ ) ≅ B ( λ ) \boldsymbol A(\lambda)\cong \boldsymbol B(\lambda) A(λ)B(λ) 的充分必要条件是
存在 m m m 阶可逆 λ \lambda λ P ( λ ) \boldsymbol P(\lambda) P(λ) n n n 阶可逆 λ \lambda λ Q ( λ ) \boldsymbol Q(\lambda) Q(λ),使 B ( λ ) = P ( λ ) A ( λ ) Q ( λ ) . \boldsymbol B(\lambda)=\boldsymbol P(\lambda)\boldsymbol A(\lambda)\boldsymbol Q(\lambda). B(λ)=P(λ)A(λ)Q(λ).

定理 1.10 任意一个秩为 r r r λ \lambda λ A ( λ ) A(\lambda) A(λ) 都等价于一个分块 λ \lambda λ ( D ( λ ) O O O ) \left(\begin{matrix}\boldsymbol {D}(\lambda)&\boldsymbol{O}\\ \boldsymbol{O}&\boldsymbol{O}\end{matrix}\right) (D(λ)OOO),其中 D ( λ ) = ( d 1 ( λ ) d 2 ( λ ) ⋱ d r ( λ ) ) \left.\boldsymbol{D}(\lambda)=\left(\begin{matrix}d_1(\lambda)&&&&\\ &d_2(\lambda)&&&\\&&\ddots&&\\ &&&d_r(\lambda)\end{matrix}\right.\right) D(λ)= d1(λ)d2(λ)dr(λ) r r r 阶对角阵, d i ( λ ) ( 1 ⩽ i ⩽ r ) d_i(\lambda)(1\leqslant i\leqslant r) di(λ)(1ir) 是关于 λ \lambda λ 的首项系数为 1 1 1 的多项式,并且 d i ( λ ) ∣ d i + 1 ( λ ) d_i(\lambda)\mid d_{i+1}(\lambda) di(λ)di+1(λ) ( 1 ⩽ i < r ) (1\leqslant i<r) (1i<r),称这个分块 λ \lambda λ 阵为 A ( λ ) A(λ) A(λ)等价标准形 I r ( λ ) . I_r(\lambda). Ir(λ).

例 1.11 λ λ λ A ( λ ) = [ 1 − λ 2 λ − 1 λ λ λ 2 − λ 1 + λ 2 λ 3 + λ − 1 − λ 2 ] A(\lambda)=\begin{bmatrix}1-\lambda&2\lambda-1&\lambda\\\lambda&\lambda^2&-\lambda\\1+\lambda^2&\lambda^3+\lambda-1&-\lambda^2\end{bmatrix} A(λ)= 1λλ1+λ22λ1λ2λ3+λ1λλλ2 的等价标准形,
解 把 λ \lambda λ 阵化成等价标准形的步骤是:
首先观察 A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的(1,1)元素是否能整除其他元素. 若能,则用初等变换把第一行和第一列的其余元素都化为零;
若不能,则由 a 1 i = q a 11 + r a_{1i}=qa_{11}+r a1i=qa11+r a 11 a_{11} a11 换为 r r r , 降低(1,1)元素的次数,直到变化后的矩阵其(1,1)元素能整除其他元素,
再用初等变换将第一行和第一列的其余元素都化为零 . 然后,考察变换后矩阵的(2,2)元素否能整除(1,1)元素以外的元素,类似地重复前面的讨程,直到化成标准形矩阵。
A ( λ ) = [ 1 − λ 2 λ − 1 λ λ λ 2 − λ 1 + λ 2 λ 3 + λ − 1 − λ 2 ] → r 3 − λ r 2 r 1 + r 2 [ 1 λ 2 + 2 λ − 1 0 λ λ 2 − λ 1 λ − 1 0 ] → r 3 − r 1 r 2 − λ r 1 ( 1 λ 2 + 2 λ − 1 0 0 − λ 3 − λ 2 + λ − λ 0 − λ 2 − λ 0 ) → c 2 − ( λ 2 + 2 λ − 1 ) c 1 ( 1 0 0 0 − λ 3 − λ 2 + λ − λ 0 − λ 2 − λ 0 ) → r 2 − λ r 3 [ 1 0 0 0 λ − λ 0 − λ 2 − λ 0 ] → r 3 − ( λ − 1 ) r 2 c 3 + c 2 [ 1 0 0 0 λ 0 0 0 λ ( λ + 1 ) ] = I 3 ( λ ) . \begin{aligned} A(\lambda)& =\begin{bmatrix}1-\lambda&2\lambda-1&\lambda\\\lambda&\lambda^2&-\lambda\\1+\lambda^2&\lambda^3+\lambda-1&-\lambda^2\end{bmatrix}\xrightarrow[r_3-\lambda r_2]{r_1+r_2}\begin{bmatrix}1&\lambda^2+2\lambda-1&0\\\lambda&\lambda^2&-\lambda\\1&\lambda-1&0\end{bmatrix} \\ &\xrightarrow{r_3-r_1}_{r_2-\lambda r_1}\begin{pmatrix}1&\lambda^2+2\lambda-1&0\\0&-\lambda^3-\lambda^2+\lambda&-\lambda\\0&-\lambda^2-\lambda&0\end{pmatrix}\xrightarrow{c_2-(\lambda^2+2\lambda-1)c_1}\begin{pmatrix}1&0&0\\0&-\lambda^3-\lambda^2+\lambda&-\lambda\\0&-\lambda^2-\lambda&0\end{pmatrix} \\ &\xrightarrow{r_2-\lambda r_3}\begin{bmatrix}1&0&0\\0&\lambda&-\lambda\\0&-\lambda^2-\lambda&0\end{bmatrix}\xrightarrow[r_3-(\lambda-1)r_2]{c_3+c_2}\begin{bmatrix}1&0&0\\0&\lambda&0\\0&0&\lambda(\lambda+1)\end{bmatrix}=I_3(\lambda). \end{aligned} A(λ)= 1λλ1+λ22λ1λ2λ3+λ1λλλ2 r1+r2 r3λr2 1λ1λ2+2λ1λ2λ10λ0 r3r1 r2λr1 100λ2+2λ1λ3λ2+λλ2λ0λ0 c2(λ2+2λ1)c1 1000λ3λ2+λλ2λ0λ0 r2λr3 1000λλ2λ0λ0 c3+c2 r3(λ1)r2 1000λ000λ(λ+1) =I3(λ).

定义 1.12 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的所有 k k k 阶子式的首项系数为 1 1 1 的最大公因式称为 A ( λ ) A(λ) A(λ) k k k行列式因子 D k ( λ ) . D_k(\lambda). Dk(λ).

可以证明,一个 λ \lambda λ 阵经过初等变换后,其各阶行列式因子不会改变。

定理 1.13 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ) 为同阶的 λ \lambda λ 阵,则 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ) 等价的充要条件是它们有相同的各阶行列式因子.

定义 1.14 D k ( λ ) ( 1 ⩽ k ⩽ r ) D_k(\lambda)(1\leqslant k\leqslant r) Dk(λ)(1kr) λ \lambda λ A ( λ ) A(\lambda) A(λ) k k k 阶行列式因子,
则称 d k ( λ ) = D k ( λ ) / D k − 1 ( λ ) ( 1 ⩽ k ⩽ r ) d_k(\lambda)=D_k(\lambda)/D_{k-1}(\lambda) (1\leqslant k\leqslant r) dk(λ)=Dk(λ)/Dk1(λ)(1kr) A ( λ ) A(\lambda) A(λ) 的 第 k k k不变因子,其中 D 0 ( λ ) = 1. D_0(\lambda)=1. D0(λ)=1.

显然, A ( λ ) A(\lambda) A(λ) 的不变因子与 A ( λ ) A(\lambda) A(λ) 的行列式因子是相互确定的.

定理 1.15 A ( λ ) A(\lambda) A(λ) , B ( λ ) B(\lambda) B(λ) 为同阶的 λ \lambda λ 阵,则 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ) 等价的充要条件是它们的不变因子完全相同.

定理 1.16 λ \lambda λ 阵的等价标准形是唯一的.

事实上,由于 λ \lambda λ A ( λ ) A(\lambda) A(λ) k k k 阶行列式因子 D k ( λ ) D_k(\lambda) Dk(λ) ( 1 ⩽ k ⩽ r ) (1\leqslant k\leqslant r) (1kr), 即 A ( λ ) A(\lambda) A(λ) k k k 阶子式的首项系数为 1 1 1 的最大公因式存在且唯一,因而 A ( λ ) A(\lambda) A(λ) 的第 k k k 个不变因子也是存在且唯一. 又 A ( λ ) A(\lambda) A(λ) 的等价标准形 I r ( λ ) I_r(\lambda) Ir(λ) k k k 阶行列式因子
D k ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋅ ⋅ ⋅ d k ( λ )   ( 1 ⩽ k ⩽ r )   , D_k(\lambda)=d_1(\lambda)d_2(\lambda)\cdotp\cdotp\cdotp d_k(\lambda)\:(1\leqslant k\leqslant r)\:, Dk(λ)=d1(λ)d2(λ)⋅⋅⋅dk(λ)(1kr),并且 d 1 ( λ ) , d 2 ( λ ) , ⋯   , d r ( λ ) d_{1}(\lambda),d_{2}(\lambda),\cdots,d_{r}(\lambda) d1(λ),d2(λ),,dr(λ) 就是 A ( λ ) {A}(\lambda) A(λ) 的不变因子,故 A ( λ ) {A}(\lambda) A(λ) 的等价标准形是唯一的.

例 1.17 A ( λ ) = ( λ − 1 1 0 − 2 λ − 4 1 0 0 λ − 3 ) A(\lambda)=\begin{pmatrix}\lambda-1&1&0\\-2&\lambda-4&1\\0&0&\lambda-3\end{pmatrix} A(λ)= λ1201λ4001λ3 的等价标准形.
解 因 A ( λ ) A( \lambda ) A(λ) 的元素中有非零数 1 1 1 , 故 D 1 ( λ ) = 1. D_{_1}(\lambda)=1. D1(λ)=1. A ( λ ) A( \lambda ) A(λ) 有 二 阶 子 式 ∣ 1 0 λ − 4 1 ∣ \begin{vmatrix} 1& 0\\ \lambda- 4& 1\end{vmatrix} 1λ401 , 故
D 2 ( λ ) = 1 , D 3 ( λ ) = ∣ λ − 1 1 0 − 2 λ − 4 1 0 0 λ − 3 ∣ = ( λ − 2 )   ( λ − 3 ) 2 , D_2(\lambda)=1,\quad D_3(\lambda)=\begin{vmatrix}\lambda-1&1&0\\-2&\lambda-4&1\\0&0&\lambda-3\end{vmatrix}=(\lambda-2)\:(\lambda-3)^2, D2(λ)=1,D3(λ)= λ1201λ4001λ3 =(λ2)(λ3)2,于是 d 1 ( λ ) = d 2 ( λ ) = 1 d_{1}( \lambda ) = d_{2}( \lambda ) = 1 d1(λ)=d2(λ)=1, d 3 ( λ ) = ( λ − 2 ) ( λ − 3 ) 2 . d_{3}( \lambda ) = ( \lambda - 2) ( \lambda - 3) ^{2}. d3(λ)=(λ2)(λ3)2.
A ( λ ) A(\lambda) A(λ) 的等价标准形是 I r ( λ ) = [ 1 1 ( λ − 2 ) ( λ − 3 ) 2 ] . \boldsymbol{I}_r(\lambda)=\begin{bmatrix}1&&\\&1&\\&&(\lambda-2)(\lambda-3)^2\end{bmatrix}. Ir(λ)= 11(λ2)(λ3)2 .

定义 1.18 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的全体不变因子在复数域 C \mathbb C C 上有下面的标准分解式 d 1 ( λ ) = ( λ − a 1 ) l 11 ( λ − a 2 ) l 21 ⋯ ( λ − a q ) l q 1   , d 2 ( λ ) = ( λ − a 1 ) l 12 ( λ − a 2 ) l 22 ⋯ ( λ − a q ) l q 2   , ⋯ d r ( λ ) = ( λ − a 1 ) l 1 r ( λ − a 2 ) l 2 r ⋯ ( λ − a q ) l q r   , \begin{aligned} &d_1(\lambda) =(\lambda-a_1)^{l_{11}}(\lambda-a_2)^{l_{21}}\cdots(\lambda-a_q)^{l_{q1}}\:, \\ &d_{2}(\lambda) =(\lambda-a_1)^{l_{12}}(\lambda-a_2)^{l_{22}}\cdots(\lambda-a_q)^{l_{q2}}\:, \\ &\cdots \\ &d_{r}(\lambda) =(\lambda-a_1)^{l_{1r}}(\lambda-a_2)^{l_{2r}}\cdots(\lambda-a_q)^{l_{qr}}\:, \end{aligned} d1(λ)=(λa1)l11(λa2)l21(λaq)lq1,d2(λ)=(λa1)l12(λa2)l22(λaq)lq2,dr(λ)=(λa1)l1r(λa2)l2r(λaq)lqr,其中 a 1 , a 2 , . . . , a q a_1,a_2,...,a_q a1,a2,...,aq 两两不同, 0 ⩽ l i 1 ⩽ l i 2 ⩽ . . . ⩽ l i r ( i = 1 ,   2 ,   . . . ,   q ) 0\leqslant l_{i_1}\leqslant l_{i_2}\leqslant...\leqslant l_{i_r} (i=1,\:2,\:...,\:q) 0li1li2...lir(i=1,2,...,q) , 称因式 ( λ − a i ) l j (\lambda-a_i)^{l_j} (λai)lj ( l i j > 0 ,   i = 1 , 2 , ⋯   , q ,   j = 1 ,   2 , ⋯   , r ) (l_{ij}>0, ~i=1, 2, \cdots,q,~j=1,~2, \cdots, r) (lij>0, i=1,2,,q, j=1, 2,,r) A ( λ ) A(\lambda) A(λ)初等因子.

例如,如果一个 5 阶 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的等价标准形是                     ~~~~~~~~~~~~~~~~~~~                    那么 A ( λ ) A(\lambda) A(λ) 的所有不变因子在复数域 C \mathbb C C上的标准分解式为
  ~  
I r ( λ ) = [ 1 λ − 2 ( λ − 2 ) ( λ + 3 ) ( λ − 2 ) 2 ( λ + 3 ) 2 0 ] . \boldsymbol{I}_r(\lambda)=\begin{bmatrix}1&&&&\\&\lambda-2&&&\\&&(\lambda-2)(\lambda+3)&&\\&&&(\lambda-2)^2(\lambda+3)^2&\\&&&&0\end{bmatrix}. Ir(λ)= 1λ2(λ2)(λ+3)(λ2)2(λ+3)20 .                     d 1 ( λ ) = 1 , d 2 ( λ ) = λ − 2 , d 3 ( λ ) = ( λ − 2 ) ( λ + 3 )   , d 4 ( λ ) = ( λ − 2 ) 2 ( λ + 3 ) 2 . ~~~~~~~~~~~~~~~~~~~\begin{aligned}&d_{1}(\lambda)=1,\\&d_{2}(\lambda)=\lambda-2,\\&d_{3}(\lambda)=(\lambda-2)(\lambda+3)\:,\\&d_{4}(\lambda)=(\lambda-2)^{2}(\lambda+3)^{2}.\end{aligned}                    d1(λ)=1,d2(λ)=λ2,d3(λ)=(λ2)(λ+3),d4(λ)=(λ2)2(λ+3)2.
  ~  
所以 , A ( λ ) ,A(\lambda) ,A(λ) 的全体初等因子为 λ − 2 , λ − 2 , ( λ − 2 ) 2 , λ + 3 , ( λ + 3 ) 2 . \lambda-2,\lambda-2,(\lambda-2)^{2},\lambda+3,(\lambda+3)^{2}. λ2,λ2,(λ2)2,λ+3,(λ+3)2.

定理 1.19 λ λ λ A ( λ ) A(\lambda) A(λ)为分块对角阵
A ( λ ) = [ A 1 ( λ ) A 2 ( λ ) ⋱ A s ( λ ) ] , \mathbf{A}(\lambda)=\begin{bmatrix}\mathbf{A}_1(\lambda)\\&\mathbf{A}_2(\lambda)\\&&\ddots\\&&&\mathbf{A}_s(\lambda)\end{bmatrix}, A(λ)= A1(λ)A2(λ)As(λ) , A ( λ ) \boldsymbol{A}(\lambda) A(λ) 的每个子块 A j ( λ ) \boldsymbol{A}_j(\lambda) Aj(λ) ( 1 ⩽ j ⩽ s ) (1\leqslant j\leqslant s) (1js) 的每个初等因子都是 A ( λ ) A(\lambda) A(λ) 的初等因子,
并且 A ( λ ) \boldsymbol A(\lambda) A(λ) 的每个初等因子必是某个 A j ( λ ) ( 1 ⩽ j ⩽ s ) \boldsymbol A_j(\lambda)(1\leqslant j\leqslant s) Aj(λ)(1js) 的初等因子.

在记录一个 λ \lambda λ A ( λ ) A(\lambda) A(λ) 的全体初等因子时,必须逐一记录 A ( λ ) A(\lambda) A(λ) 的每个不变因子在复数域 C \mathbb C C 上的标准分解式中的所有因式 ( λ − a i ) l i ( l i j > 0 ) \lambda-a_i)^{l_i}(l_{ij}>0) λai)li(lij>0) , 不论它们当中是否有重复出现的。

这样,在不计顺序的前提下, A ( λ ) A(\lambda) A(λ) 的所有不变因子唯一确定了其全体初等因子。反之, 如果已知 A ( λ ) A(\lambda) A(λ) 的全体初等因子,也能够确定 A ( λ ) A(λ) A(λ) 的所有不变因子。

利用上一个例题来做说明,已知 A ( λ ) A(λ) A(λ) 的秩是 4 4 4,因此,首先取 A ( λ ) A(\lambda) A(λ) 的全部初等因子 λ − 2 , λ − 2 , ( λ − 2 ) 2 , λ + 3 , ( λ + 3 ) 2 \lambda-2,\lambda-2,(\lambda-2)^2,\lambda+3,(\lambda+3)^2 λ2,λ2,(λ2)2,λ+3,(λ+3)2 的最小公倍式作为 A ( λ ) A(\lambda) A(λ) 的第 4 4 4 个不变因子,即 d 4 ( λ ) = ( λ − 2 ) 2 ( λ + 3 ) 2 d_4(\lambda)=(\lambda-2)^2(\lambda+3)^2 d4(λ)=(λ2)2(λ+3)2 , 然后再取剩余的初等因子 λ − 2 , λ − 2 , λ + 3 \lambda-2,\lambda-2,\lambda+3 λ2,λ2,λ+3 的最小公倍式作为 A ( λ ) A(\lambda) A(λ)的第 3 个不变因子,即 d 3 ( λ ) = ( λ − 2 ) ( λ + 3 ) . d_3(\lambda)=(\lambda-2)(\lambda+3). d3(λ)=(λ2)(λ+3).同理得到 d 2 ( λ ) = λ − 2. d_{_2}(\lambda)=\lambda-2. d2(λ)=λ2.这时 A ( λ ) A(\lambda) A(λ)的全部初等因子都已经使用过了,于是剩余的不变因子 d 1 ( λ ) = 1. d_1(\lambda)=1. d1(λ)=1.

定理 1.20 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ)为同阶的 λ \lambda λ-阵,则 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ)等价的充要条件是它们的初等因子完全相同且有相同的秩

定义 1.21 分块矩阵 J = [ J 1 J 2 ⋱ J s ] \boldsymbol{J}=\begin{bmatrix}\boldsymbol{J}_1\\&\boldsymbol{J}_2\\&&\ddots\\&&&\boldsymbol{J}_s\end{bmatrix} J= J1J2Js 称为 Jordan 标准形,其中
J i = [ λ i 1 λ i ⋱ ⋱ 1 λ i ] n i \boldsymbol{J}_i=\begin{bmatrix}\lambda_i&1\\&\lambda_i&\ddots\\&&\ddots&1\\&&&\lambda_i\end{bmatrix}_{n_i} Ji= λi1λi1λi ni, i = 1 , 2 , ⋯   , s i=1,2,\cdots,s i=1,2,,s 称为 n i n_i niJordan 块

定理 1.22 n n n 阶矩阵 A \boldsymbol A A 的初等因子是 ( λ − λ 1 ) n 1 , ( λ − λ 2 ) n 2 , . . . , ( λ − λ s ) n s (\lambda-\lambda_1)^{n_1},(\lambda-\lambda_2)^{n_2},...,(\lambda-\lambda_s)^{n_s} (λλ1)n1,(λλ2)n2,...,(λλs)ns , 则存在Jordan 标准形

J = [ J 1 J 2 ⋱ J s ] \boldsymbol{J}=\begin{bmatrix}\boldsymbol{J}_1\\&\boldsymbol{J}_2\\&&\ddots\\&&&\boldsymbol{J}_s\end{bmatrix} J= J1J2Js , 使得 A \boldsymbol A A J \boldsymbol J J 相似,并且 n 1 + n 2 + . . . + n s = n . n_1+n_2+...+n_s=n. n1+n2+...+ns=n.

例 1.23 A = [ 1 − 1 0 2 4 − 1 0 0 3 ] \mathbf{A}=\begin{bmatrix}1&-1&0\\2&4&-1\\0&0&3\end{bmatrix} A= 120140013 的 Jordan标准形.
解 因为
λ E − A = [ λ − 1 1 0 − 2 λ − 4 1 0 0 λ − 3 ] → c 1 ↔ c 2 [ 1 λ − 1 0 λ − 4 − 2 1 0 0 λ − 3 ] → r 2 − ( λ − 4 ) r 1 c 2 − ( λ − 1 ) c 1 [ 1 0 0 0 − λ 2 + 5 λ − 6 1 0 0 λ − 3 ] → c 2 ↔ c 3 [ 1 0 0 0 1 − λ 2 + 5 λ − 6 0 λ − 3 0 ] → r 3 − ( − λ 2 + 5 λ − 6 ) r 2 c 3 − ( λ − 3 ) c 2 [ 1 0 0 0 1 0 0 0 ( λ − 2 ) ( λ − 3 ) 2 ] \begin{aligned} \lambda E- A=&\begin{bmatrix}\lambda-1&1&0\\-2&\lambda-4&1\\0&0&\lambda-3\end{bmatrix}\xrightarrow{c_{1}\leftrightarrow c_{2}}\begin{bmatrix}1&\lambda-1&0\\\lambda-4&-2&1\\0&0&\lambda-3\end{bmatrix} \\ &\xrightarrow[r_2-(\lambda-4)r_1]{c_2-(\lambda-1)c_1}\begin{bmatrix}1&0&0\\0&-\lambda^2+5\lambda-6&1\\0&0&\lambda-3\end{bmatrix} \xrightarrow{c_{2}\leftrightarrow c_{3}}\begin{bmatrix}1&0&0\\0&1&-\lambda^2+5\lambda-6\\0&\lambda-3&0\end{bmatrix}\\ &\xrightarrow[r_3-(-\lambda^2+5\lambda-6)r_2]{c_3-(\lambda-3)c_2}\begin{bmatrix}1&0&0\\0&1&0\\0&0&(\lambda-2)(\lambda-3)^2\end{bmatrix} \end{aligned} λEA= λ1201λ4001λ3 c1c2 1λ40λ12001λ3 c2(λ1)c1 r2(λ4)r1 1000λ2+5λ6001λ3 c2c3 10001λ30λ2+5λ60 c3(λ3)c2 r3(λ2+5λ6)r2 10001000(λ2)(λ3)2
所以, 矩阵 A A A 的初等因子为 λ − 2 , ( λ − 3 ) 2 \lambda-2,(\lambda-3)^2 λ2,(λ3)2, A A A 的 Jordan 标准形 J = [ 2 0 0 0 3 1 0 0 3 ] . \boldsymbol{J}=\begin{bmatrix}2&0&0\\0&3&1\\0&0&3\end{bmatrix}. J= 200030013 .

定义 1.24 A \mathbf A A n n n 阶方阵,若存在多项式 φ ( λ ) = a 0 λ n + a 1 λ n − 1 + ⋅ ⋅ ⋅ + a n − 1 λ + a n , \varphi(\lambda)=a_0\lambda^n+a_1\lambda^{n-1}+\cdotp\cdotp\cdotp+a_{n-1}\lambda+a_n, φ(λ)=a0λn+a1λn1+⋅⋅⋅+an1λ+an,使得 φ ( A ) = O \varphi(\mathbf A)=O φ(A)=O , 则称 φ ( λ ) \varphi(\lambda) φ(λ) A \mathbf A A 的一个零化多项式.

定理 1.25 (Cayley-Hamilton) f ( λ ) = ∣ λ E − A ∣ f(\lambda)=|\lambda\boldsymbol{E}-\boldsymbol{A}| f(λ)=λEA 是方阵 A A A 的特征多项式,则 f ( A ) = O f(\mathbf{A)=O} f(A)=O , 即 A \mathbf A A 的特征多项式是 A \mathbf A A 的一个 零化多项式

定义 1.26 A \mathbf A A n n n 阶方阵,则称 A \mathbf A A 的首项系数为 1 1 1 的次数最低的零化多项式为 A \mathbf A A最小多项式,记作 m A ( λ ) . m_{\mathbf{A}}(\lambda). mA(λ).
( 1 ) (1) (1) m A ( λ ) m_{\mathbf{A}}(\lambda) mA(λ)能整除 A \mathbf A A 的任意一个零化多项式 φ ( λ ) . \varphi(\lambda). φ(λ).
( 2 )   m A ( λ ) (2)\:m_{\mathbf{A}}(\lambda) (2)mA(λ)是唯一的.
( 3 )   m A ( λ ) (3)\:m_{\mathbf{A}}(\lambda) (3)mA(λ) A \mathbf A A 的特征多项式 f ( λ ) f(\lambda) f(λ) 具有相同的根.
( 4 )   m A ( λ ) (4) \:m_{\mathbf{A}}(\lambda) (4)mA(λ) A \mathbf A A 的特征矩阵 λ E − A \mathbf {\lambda E-A} λEA 的第 n n n 个不变因子 d n ( λ ) . d_{n}(\lambda). dn(λ).

证明 (2) m 1 ( λ ) ∣ m 2 ( λ ) ,   m 2 ( λ ) ∣ m 1 ( λ )   , m_1(\lambda)\mid m_2(\lambda),\:m_2(\lambda)\mid m_1(\lambda)\:, m1(λ)m2(λ),m2(λ)m1(λ), 又它们都是首项系数为 1 的多项式,故 m 1 ( λ ) = m 2 ( λ ) . m_1(\lambda)=m_2(\lambda). m1(λ)=m2(λ).
(3)由(1)的结论知 , m A ( λ ) ∣ f ( λ ) ,m_{A}(\lambda)\mid f(\lambda) ,mA(λ)f(λ),即 f ( λ ) = q ( λ ) m A ( λ ) f(\lambda)=q(\lambda)m_{A}(\lambda) f(λ)=q(λ)mA(λ) , 故 m A ( λ ) m_{A}(\lambda) mA(λ) 的根必是 f ( λ ) f(\lambda) f(λ) 的根. 反之,若 λ \lambda λ f ( λ ) f(\lambda) f(λ) 的根,即 λ \lambda λ A A A 的特征根,则存在 A A A 的特征向量 α \alpha α 使得 A a = λ α A\boldsymbol a=\lambda\boldsymbol\alpha Aa=λα,于是 m A ( A ) α = m A ( λ ) α . m_{A}(\boldsymbol{A})\boldsymbol{\alpha}=m_{A}(\lambda)\boldsymbol{\alpha}. mA(A)α=mA(λ)α. m A ( A ) = O m_{A}(\boldsymbol{A})=\boldsymbol{O} mA(A)=O,故 m A ( λ ) = 0. m_{A}(\lambda)=0. mA(λ)=0.
(4)设 J \boldsymbol{J} J A \boldsymbol{A} A 的 Jordan 标 准 形 , P − 1 A P = J . \boldsymbol{P}^{- 1}\boldsymbol{AP}= \boldsymbol{J}. P1AP=J. 利用 d n ( λ ) d_n(\lambda) dn(λ)的标准分解式容易得到 d n ( A ) d_n(\boldsymbol{A}) dn(A) = P d n ( J ) P − 1 = 0 . =\boldsymbol{P}d_n(\boldsymbol{J})\boldsymbol{P}^{-1}=\boldsymbol{0}. =Pdn(J)P1=0.另一方面,对 d n ( λ ) d_n(\lambda) dn(λ)的任意非平凡因式 φ ( λ ) \varphi(\lambda) φ(λ),同样也容易验证 φ ( A ) = P φ ( J ) P − 1 ≠ O \varphi(A)=P\varphi(J)P^{-1}\neq\boldsymbol{O} φ(A)=(J)P1=O, 从而 m A ( λ ) = d n ( λ ) . m_A(\lambda)=d_n(\lambda). mA(λ)=dn(λ).

定理 1.27 一个 n n n 阶方阵 A \mathbf A A 相似于对角阵的充要条件是 A \mathbf A A 的最小多项式无重根.

证明 方阵 A \mathbf A A 相似于对角阵的充要条件是 A \mathbf A A 的初等因子都是 λ λ λ 的一次多项式,而 A \mathbf A A 的初等因子都是 λ λ λ 的一次多项式当且仅当 A \mathbf A A 的第 n n n 个不变因子无重根, A \mathbf A A 的第 n n n 个不变因子就是 A \mathbf A A 的最小多项式.

例 1.28 A = ( 3 1 1 − 1 1 − 1 1 1 3 ) A=\begin{pmatrix}3&1&1\\-1&1&-1\\1&1&3\end{pmatrix} A= 311111113 的最小多项式.
解 因为 λ E − A \lambda\boldsymbol{E}-\boldsymbol{A} λEA
= ( λ − 3 − 1 − 1 1 λ − 1 1 − 1 − 1 λ − 3 ) → ( 1 λ − 1 1 λ − 3 − 1 − 1 − 1 − 1 λ − 3 ) → ( 1 0 0 0 − λ 2 + 4 λ − 4 − λ + 2 0 λ − 2 λ − 2 ) \begin{aligned}= \begin{pmatrix}\lambda-3&-1&-1\\1&\lambda-1&1\\-1&-1&\lambda-3\end{pmatrix}\to \begin{pmatrix}1&\lambda-1&1\\\lambda-3&-1&-1\\-1&-1&\lambda-3\end{pmatrix}\to \begin{pmatrix}1&0&0\\0&-\lambda^2+4\lambda-4&-\lambda+2\\0&\lambda-2&\lambda-2\end{pmatrix}\end{aligned} = λ3111λ1111λ3 1λ31λ11111λ3 1000λ2+4λ4λ20λ+2λ2
所以 A A A 的初等因子 λ − 2 , λ − 2 , λ − 3 \lambda-2,\lambda-2,\lambda-3 λ2,λ2,λ3 A A A 的最小多项式 m A ( λ ) = ( λ − 2 ) ( λ − 3 ) m_{A}(\lambda)=(\lambda-2)(\lambda-3) mA(λ)=(λ2)(λ3)

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
### 回答1: 矩阵分析是指对矩阵进行深入研究和分析的一门学科。在矩阵分析中,horn.r.a.是一个重要的概念。 horn.r.a.是指矩阵的Horn规范化,它是一种特殊的矩阵规范化方法。Horn规范化是矩阵分析中的一个重要工具,它可以将一个任意矩阵规范化为一个特殊的形式。 具体来说,如果一个矩阵满足以下条件,则可以通过Horn规范化变换为horn.r.a.形式: 1. 矩阵的对角线元素为非负数; 2. 矩阵的右上角元素(不包括对角线)为非正数。 通过Horn规范化,我们可以简化矩阵的计算和分析过程。这是因为horn.r.a.矩阵具有一些特殊的性质,比如具有非负的主对角线元素和非正的右上角元素。这些性质使得horn.r.a.矩阵在很多应用领域中非常有用,比如在数学计算、统计学和经济学等领域中。 总之,矩阵分析中的horn.r.a.是对矩阵进行Horn规范化的一种特殊形式。通过Horn规范化,我们可以简化矩阵的计算和分析过程,并在各个应用领域中发挥重要作用。 ### 回答2: 矩阵分析是数学中的一个分支,它主要研究矩阵及其性质、运算以及与其他数学概念之间的关系。Horn.R.A.是矩阵分析领域中的著名学者。 Horn.R.A.全名为Roger A. Horn,他是矩阵分析领域的知名学者和专家。他在矩阵分析领域做出了很多贡献,包括出版了多本影响深远的著作。其中最为人所熟知的是与Charles R. Johnson合著的《矩阵分析》(Matrix Analysis),该书被广泛用作矩阵分析的教材。 Horn.R.A.在矩阵分析领域的研究主要集中在矩阵理论、矩阵函数和矩阵不等式等方面。他的贡献被广泛应用于各个领域,包括控制论、信号处理、优化问题等。 在矩阵理论方面,Horn.R.A.的工作主要涉及矩阵的特征值、特征向量以及特征分解等。他提出了许多重要的结果和定理,为矩阵分析领域的进一步发展提供了基础。 在矩阵函数方面,Horn.R.A.对矩阵的函数进行了深入的研究。他提出了一些矩阵函数的性质和计算方法,为矩阵在实际应用中的处理提供了理论依据。 此外,Horn.R.A.的研究还涉及到矩阵不等式和矩阵近似等问题。他的工作在控制论和优化问题中具有重要的应用价值。 总的来说,Horn.R.A.是矩阵分析领域的重要学者和研究者,他的工作对于矩阵分析理论的发展和应用起到了重要的推动作用。 ### 回答3: Horn.R.A.矩阵分析是一种研究矩阵性质和特征的方法。其方法主要集中在矩阵的特征值和特征向量上,通过对矩阵进行分析,可以得到矩阵的特征值以及与之对应的特征向量,进而可以揭示矩阵的结构和特性,从而应用于各个领域中。 矩阵分析中的Horn.R.A.方法是一种特征值估计的方法,用于计算大型稀疏矩阵的近似特征值。该方法通过迭代的方式,根据矩阵的特征值和特征向量的递归关系,采用逐步收缩的方法逼近求解。 Horn.R.A.方法在很多实际问题中有着广泛的应用。例如,在图像处理领域中,通过对图像矩阵进行分析,可以得到图像的特征值和特征向量,从而实现图像的降维和特征提取。在社交网络分析中,通过对社交网络的矩阵进行Horn.R.A.分析,可以发现社交网络中的重要节点和社区结构。此外,在物理学、工程学和金融学等领域,Horn.R.A.方法也有广泛的应用。 总的来说,Horn.R.A.矩阵分析方法在解决大型稀疏矩阵的特征值问题上具有重要的意义,可以用于揭示矩阵的结构和特性,帮助我们理解各个领域中的复杂问题,并为实际应用提供了基础和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值