【矩阵论】6.总结2

6. 总结2

4. 矩阵分解 两个矩阵 LU分解 QR分解 满秩分解 奇异值分解

LU 分解 (Gauss消去法,待定系数法 )

在 Gauss 消去过程中有
A = L 1 − 1 L 2 − 1 ⋅ ⋅ ⋅ L n − 1 − 1 A ( n ) . \mathbf{A}=\mathbf{L}_1^{-1}\mathbf{L}_2^{-1}\cdotp\cdotp\cdotp\mathbf{L}_{n-1}^{-1}\mathbf{A}^{(n)}. A=L11L21⋅⋅⋅Ln11A(n). L i − 1 = [ 1 ⋱ 1 l i + 1 , i 1 … ⋱ l n , i 1 ] , i = 1 , 2 , ⋯   , n − 1 \boldsymbol{L}_i^{-1}=\begin{bmatrix}1&&&&&\\&\ddots&&&&\\&&1&&&\\&&l_{i+1,i}&1&&\\&&\dots&&\ddots&\\&&l_{n,i}&&&1\end{bmatrix},\quad i=1,2,\cdots,n-1 Li1= 11li+1,iln,i11 ,i=1,2,,n1

L = L 1 − 1 L 2 − 1 . . . L n − 1 − 1 L=L_1^{-1}L_2^{-1}...L_{n-1}^{-1} L=L11L21...Ln11 是单位下三角矩阵, U = A ( n ) U=A^{(n)} U=A(n) 是一个上三角矩阵,则有 A = L U A=LU A=LU .

Doolittle 分解 充要条件 A A A各阶顺序主子阵均不为零.

1.Doolittle 分解 A = L U A=LU A=LU , 这里 L L L单位下三角矩阵 U U U上三角矩阵

2.Crout 分解 A = L U A=LU A=LU , 这里 L L L下三角矩阵 U U U单位上三角矩阵.

3.LDU 分解 A = L D U A=LDU A=LDU , 这里 L L L单位下三角矩阵 D D D对角矩阵 U U U单位上三角矩阵.

尽管矩阵的三角分解不唯一,但是矩阵所有顺序主子式均不等于零时,这三种三角分解具有唯一性。

例 6.1 已知 A = [ 2 3 4 − 2 0 2 2 − 3 − 3 ] , \mathbf{A}=\begin{bmatrix}2&3&4\\-2&0&2\\2&-3&-3\end{bmatrix}, A= 222303423 ,计算矩阵 A A A 的 Doolittle 分解 (Gauss消去法,待定系数法 )
解 初等变换 L 1 = [ 1 0 0 1 1 0 − 1 0 1 ] , L 1 A = [ 2 3 4 0 3 6 0 − 6 − 7 ] \boldsymbol{L}_1=\begin{bmatrix}1&0&0\\1&1&0\\-1&0&1\end{bmatrix},\quad\boldsymbol{L}_1\boldsymbol{A}=\begin{bmatrix}2&3&4\\0&3&6\\0&-6&-7\end{bmatrix} L1= 111010001 ,L1A= 200336467
同理 L 2 = [ 1 0 0 0 1 0 0 2 1 ] , L 2 L 1 A = [ 2 3 4 0 3 6 0 0 5 ] \boldsymbol{L}_{2}=\begin{bmatrix}1&0&0\\0&1&0\\0&2&1\end{bmatrix},\quad\boldsymbol{L}_{2}\boldsymbol{L}_{1}\boldsymbol{A}=\begin{bmatrix}2&3&4\\0&3&6\\0&0&5\end{bmatrix} L2= 100012001 ,L2L1A= 200330465
L = L 1 − 1 L 2 − 1 = [ 1 0 0 − 1 1 0 1 − 2 1 ] , U = [ 2 3 4 0 3 6 0 0 5 ] \boldsymbol{L}=\boldsymbol{L}_{1}^{-1}\boldsymbol{L}_{2}^{-1}=\begin{bmatrix}1&0&0\\-1&1&0\\1&-2&1\end{bmatrix},\boldsymbol{U}=\begin{bmatrix}2&3&4\\0&3&6\\0&0&5\end{bmatrix} L=L11L21= 111012001 ,U= 200330465

Cholesky 分解(对称正定矩阵) (待定系数法)

A ∈ R n × n A\in\mathbf{R}^{n\times n} ARn×n 为对称正定矩阵,则存在唯一对角元素均为正的下三角矩阵 G G G , 使得 A = G G T A=GG^\mathrm{T} A=GGT , 这样的分解称为对称正定矩阵的 Cholesky 分解.

例 6.3 计算矩阵 A 的 Choleskey 分解 , A = [ 4 2 − 2 2 2 − 3 − 2 − 3 14 ] . \mathbf{A}=\begin{bmatrix}4&2&-2\\2&2&-3\\-2&-3&14\end{bmatrix}. A= 4222232314 .
解 设 A 的 Choleskey 矩阵分解 A = G G T A=\boldsymbol{GG}^{\mathrm{T}} A=GGT, 其中 G = [ g 11 0 0 g 21 g 22 0 g 31 g 32 g 33 ] . \boldsymbol{G}=\begin{bmatrix}g_{11}&0&0\\g_{21}&g_{22}&0\\g_{31}&g_{32}&g_{33}\end{bmatrix}. G= g11g21g310g22g3200g33 .
根据计算, g 11 = 4 = 2 ; g 21 = 2 / 2 = 1 ; g 31 = − 2 / 2 = 1 , g 22 = 2 − 1 = 1 ; g 32 = − 2 , g 33 = 14 − 1 − 4 = 3. \begin{aligned} &g_{11} =\sqrt{4}=2;\quad g_{21}=2/2=1;\quad g_{31}=-2/2=1, \\ &g_{22} =\sqrt{2-1}=1;\quad g_{32}=-2, \\ &g_{33} =\sqrt{14-1-4}=3. \\ \end{aligned} g11=4 =2;g21=2/2=1;g31=2/2=1,g22=21 =1;g32=2,g33=1414 =3.由此可得 G = [ 2 1 1 − 1 − 2 3 ] . \mathbf{G}=\begin{bmatrix}2&&\\1&1&\\-1&-2&3\end{bmatrix}. G= 211123 .

正交三角分解(QR分解)

正交矩阵 Q Q T = Q T Q = E QQ^\mathrm{T}=Q^\mathrm{T}Q=E QQT=QTQ=E
正交矩阵的性质: ( 1 )   Q − 1 = Q T   ; (1)\:Q^{-1}=Q^{\mathrm{T}}\:; (1)Q1=QT; ( 2 )   det ⁡ ( Q ) = ± 1   ; (2)\:\det(Q)=\pm1\:; (2)det(Q)=±1; ( 3 ) Q x (3) Qx (3)Qx 的长度与 x x x 的长度相等.
反射矩阵( Householder 变换)设 w ∈ R n w\in\mathbf{R}^n wRn , 且 ∥ w ∥ 2 = 1 \|w\|_2=1 w2=1 , 则 P = I − 2 w w T P=I-2ww^\mathrm{T} P=I2wwT 称为 Householder 变换

给定矩阵 A ∈ R n × n A\in\mathbf{R}^{n\times n} ARn×n , 若存在 正交矩阵 Q ∈ R n × n Q\in\mathbb{R}^{n\times n} QRn×n上三角矩阵 R ∈ R n × n R\in\mathbf{R}^{n\times n} RRn×n 使得 A = Q R A=QR A=QR , 这种分解称为矩阵的一个正交三角分解,又称 Q R QR QR 分解 .

例 用 Gram-Schmidt 正交化过程 计算矩阵 A A A 的正交三角分解. A = ( 2 − 2 − 1 2 7 2 1 8 7 ) . \mathbf{A}=\begin{pmatrix}2&-2&-1\\2&7&2\\1&8&7\end{pmatrix}. A= 221278127 .
解 令矩阵 A = ( α 1 , α 2 , α 3 ) A=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3) A=(α1,α2,α3) , 证 3 个 n n n 阶向量 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 线性无关,
  ~  
β 1 = α 1 ∣ ∣ α 1 ∣ ∣ 2 = ( 2 3    2 3    1 3 ) T β ^ 2 = α 2 − ( α 2 , β 1 ) ∣ β 1 ∣ 2 β 1 = [ − 6 3 6 ] , β 2 = β ^ 2 β ^ 2 = ( − 2 3    1 3    2 3 ) T β ^ 3 = α 3 − ( α 3 , β 2 ) ∣ β 2 ∣ 2 β 2 − ( α 3 , β 1 ) ∣ β 1 ∣ 2 β 1 = [ 1 − 2 2 ] , β 3 = β ^ 3 β ^ 3 = ( 1 3    − 2 3    2 3 ) T \begin{aligned} &\beta_1=\frac{{\alpha}_1}{||\alpha_{1}||_{2}}=(\frac{2}{3}~~\frac{2}{3}~~\frac{1}{3})^T \\ & \hat\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{|\beta_1|^2}\beta_1=\begin{bmatrix}-6\\3\\6\end{bmatrix} , \beta_2=\frac{ \hat\beta_2}{ \hat\beta_2}=(-\frac{2}{3}~~\frac{1}{3}~~\frac{2}{3})^T\\ & \hat\beta_{3}=\alpha_{3}-\frac{(\alpha_{3},\beta_{2})}{|\beta_{2}|^{2}}\beta_{2}-\frac{(\alpha_{3},\beta_{1})}{|\beta_{1}|^{2}}\beta_{1}=\begin{bmatrix}1\\-2\\2\end{bmatrix}, \beta_3=\frac{ \hat\beta_3}{ \hat\beta_3}=(\frac{1}{3}~~-\frac{2}{3}~~\frac{2}{3})^T \\ \end{aligned} β1=∣∣α12α1=(32  32  31)Tβ^2=α2β12(α2,β1)β1= 636 ,β2=β^2β^2=(32  31  32)Tβ^3=α3β22(α3,β2)β2β12(α3,β1)β1= 122 ,β3=β^3β^3=(31  32  32)T
用 Schmidt 正交化方法可构造 Q = ( β 1 , β 2 , β 3 ) Q=(\beta_1,\beta_2,\beta_3) Q=(β1,β2,β3) , 可知 Q H Q = I Q^HQ=I QHQ=I 。而 R = Q H A R=Q^HA R=QHA
  ~  
或者 ( α 1 ,   α 2 ,   α 3 ) = ( q 1 ,   q 2 ,   q 3 ) ( r 11 r 12 r 13 0 r 22 r 23 0 0 r 33 ) , (\alpha_1,\:\alpha_2,\:\alpha_3)=(q_1,\:q_2,\:q_3)\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&r_{22}&r_{23}\\0&0&r_{33}\end{pmatrix}, (α1,α2,α3)=(q1,q2,q3) r1100r12r220r13r23r33 , α 1 = r 11 q 1 , α 2 = r 12 q 1 + r 22 q 2 , α 3 = r 13 q 1 + r 23 q 2 + r 33 q 3 . \begin{aligned} &\alpha_1=r_{11}\boldsymbol q_1,\\ &{\alpha}_2=r_{12}\boldsymbol{q}_1+r_{22}\boldsymbol{q}_2, \\ &\alpha_{3}=r_{13}\boldsymbol{q}_{1}+r_{23}\boldsymbol{q}_{2}+r_{33}\boldsymbol{q}_{3}. \\ \end{aligned} α1=r11q1,α2=r12q1+r22q2,α3=r13q1+r23q2+r33q3.
经计算, 有 r 11 = ∣ ∣ α 1 ∣ ∣ 2 = 2 2 + 2 2 + 1 2 = 3 , q 1 = α 1 ∣ ∣ α 1 ∣ ∣ 2 = ( 2 3    2 3    1 3 ) T r 12 = ( α 2 , q 1 ) = 6 , q ˉ 2 = α 2 − r 12 q 1 = [ − 6 3 6 ] , r 22 = ∣ ∣ q ˉ 2 ∣ ∣ 2 = 9 , q 2 = q ˉ 2 r 22 = [ − 2 3 1 3 2 3 ] . . \begin{aligned}&r_{11}=||\alpha_{1}||_{2}=\sqrt{2^{2}+2^{2}+1^{2}}=3, \boldsymbol{q}_1=\frac{{\alpha}_1}{||\alpha_{1}||_{2}}=(\frac{2}{3}~~\frac{2}{3}~~\frac{1}{3})^T\\ &r_{12}=(\boldsymbol{\alpha}_2,\boldsymbol{q}_1)=6, \bar{\boldsymbol{q}}_2=\boldsymbol{\alpha}_2-r_{12}\boldsymbol{q}_1=\begin{bmatrix}-6\\3\\6\end{bmatrix} , r_{22}=||\bar{\boldsymbol{q}}_{2}||_{2}=9,\boldsymbol{q}_2=\frac{\boldsymbol{\bar{q}}_2}{r_{22}}=\begin{bmatrix}-\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{bmatrix}.\\. \end{aligned} .r11=∣∣α12=22+22+12 =3,q1=∣∣α12α1=(32  32  31)Tr12=(α2,q1)=6,qˉ2=α2r12q1= 636 ,r22=∣∣qˉ22=9,q2=r22qˉ2= 323132 .
同理 最后可得 Q = 1 3 [ 2 − 2 1 2 1 − 2 1 2 2 ] , R = [ 3 6 3 0 9 6 0 0 3 ] . \boldsymbol{Q}=\dfrac{1}{3}\begin{bmatrix}2&-2&1\\2&1&-2\\1&2&2\end{bmatrix},\quad\boldsymbol{R}=\begin{bmatrix}3&6&3\\0&9&6\\0&0&3\end{bmatrix}. Q=31 221212122 ,R= 300690363 .

满秩分解

高低分解
A ∈ R m × n \mathbf A\in\mathbb{R}^{m\times n} ARm×n r a n k ( A ) = r ⩽ min ⁡ { m , n } \mathrm{rank}(\mathbf A)=r\leqslant\min\{m,n\} rank(A)=rmin{m,n} , 则可将 A \mathbf A A 作满秩分解 A = C D \mathbf {A=CD} A=CD
其中, C ∈ R m × r , D ∈ R r × n   \mathbf C\in\mathbb{R}^{m\times r},\mathbf D\in\mathbb{R}^{r\times n}\: CRm×r,DRr×n, 且 r a n k ( C ) = r a n k ( D ) = r   . \mathrm{rank}(\mathbf{C})=\mathrm{rank}(\mathbf{D})=r\:. rank(C)=rank(D)=r.

例 3.3.2 A = ( α 1 , α 2 , α 3 , α 4 , α 5 ) = [ 2 1 6 1 0 3 2 10 1 0 2 3 10 − 1 3 4 4 16 0 1 ] \begin{aligned}&A=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4,\boldsymbol{\alpha}_5)=\begin{bmatrix}2&1&6&1&0\\3&2&10&1&0\\2&3&10&-1&3\\4&4&16&0&1\end{bmatrix}\end{aligned} A=(α1,α2,α3,α4,α5)= 23241234610101611100031 ,求矩阵 A A A 的满秩分解 .
解 先用行初等变换把矩阵 A A A 化为简化阶梯形 ∣ 1 0 2 1 0 0 1 2 − 1 0 0 0 0 0 1 0 0 0 0 0 ∣ = ( β 1 , β 2 , β 3 , β 4 , β 5 ) = ( D O ) \begin{vmatrix}1&0&2&1&0\\0&1&2&-1&0\\0&0&0&0&1\\0&0&0&0&0\\\end{vmatrix}=(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3,\boldsymbol{\beta}_4,\boldsymbol{\beta}_5)=\begin{pmatrix}\boldsymbol{D}\\\boldsymbol{O}\end{pmatrix} 10000100220011000010 =(β1,β2,β3,β4,β5)=(DO) , 其中, D = [ 1 0 2 1 0 0 1 2 − 1 0 0 0 0 0 1 ] \boldsymbol{D}=\begin{bmatrix}1&0&2&1&0\\0&1&2&-1&0\\0&0&0&0&1\end{bmatrix} D= 100010220110001 3 × 5 3×5 3×5 行满秩阵.显然 β 1 , β 2 , β 5 \beta_1,\beta_2,\beta_5 β1,β2,β5 线性无关,且 p 3 = 2 β 1 + 2 β 2 , β 4 = β 1 − β 2 p_3=2\boldsymbol{\beta}_1+2\boldsymbol{\beta}_2,\boldsymbol{\beta}_4=\boldsymbol{\beta}_1-\boldsymbol{\beta}_2 p3=2β1+2β2,β4=β1β2 .由于行初等变换保持矩阵列向量组的线性组合关系,因此 α 1 , α 2 , α 5 \alpha_1,\alpha_2,\alpha_5 α1,α2,α5 线性无关,且 α 3 = 2 α 1 + 2 α 2 , α 4 = α 1 − α 2 \boldsymbol{\alpha}_3=2\boldsymbol{\alpha}_1+2\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_4=\boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2 α3=2α1+2α2,α4=α1α2. 取 C = ( α 1 , α 2 , α 5 ) = ∣ 2 1 0 3 2 0 2 3 3 4 4 1 ∣ \boldsymbol C=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_5)=\begin{vmatrix}2&1&0\\3&2&0\\2&3&3\\4&4&1\end{vmatrix} C=(α1,α2,α5)= 232412340031 , 显然 C C C 4 × 3 4×3 4×3 列满秩阵,
且满足 C D = ( α 1   ,   α 2   ,   α 5   )   [ 1 0 2 1 0 0 1 2 − 1 0 0 0 0 0 1 ] = ( α 1 , α 2 , 2 α 1 + 2 α 2 , α 1 − α 2 , α 5 ) = ( α 1 , α 2 , α 3 , α 4 , α 5 ) = A \begin{aligned} \boldsymbol{CD} &=(\boldsymbol{\alpha}_{1}\:,\:\boldsymbol{\alpha}_{2}\:,\:\boldsymbol{\alpha}_{5}\:)\:\begin{bmatrix}1&0&2&1&0\\0&1&2&-1&0\\0&0&0&0&1\end{bmatrix} \\ &=(\alpha_1,\alpha_2,2\alpha_1+2\alpha_2,\alpha_1-\alpha_2,\alpha_5) \\ &=(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)\\ &=\mathbf{A} \end{aligned} CD=(α1,α2,α5) 100010220110001 =(α1,α2,2α1+2α2,α1α2,α5)=(α1,α2,α3,α4,α5)=A

谱分解

给定矩阵 A ∈ R n × n \boldsymbol A\in\mathbb{R}^{n\times n} ARn×n 是一个正规矩阵,若存在可逆矩阵 P ∈ R n × n \boldsymbol P\in\mathbb{R}^{n\times n} PRn×n 和对角矩阵 Λ = diag ⁡ { λ 1 , λ 2 , ⋯   , λ n } ∈ R n × n \boldsymbol{\Lambda}=\operatorname{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}\in\mathbf{R}^{n\times n} Λ=diag{λ1,λ2,,λn}Rn×n 使得 A = P Λ P − 1   , A=P\Lambda P^{-1}\:, A=PΛP1, 这种分解称为矩阵 A \boldsymbol A A 的一个谱分解.

定义 3.4.1 设矩阵 A ∈ C n × n \boldsymbol A\in\mathbb{C}^{n\times n} ACn×n , 若 A A H = A H A \boldsymbol{AA^{\mathrm{H}}=A^{\mathrm{H}}A} AAH=AHA , 则称 A \boldsymbol A A正规矩阵.

定理 3.4.2 设矩阵 A ∈ C n × n \boldsymbol A\in\mathbb{C}^{n\times n} ACn×n ,则 A \boldsymbol A A 是正规矩阵当且仅当 A \boldsymbol A A n n n 个两两正交的单位特征向量。

证 首先 A X = λ 1 X AX= \lambda _{1}X AX=λ1X 可得 A H X = λ ‾ 1 X A^{H}X= \overline {\lambda }_{1}X AHX=λ1X.
引理1: A X = 0 ⇔ ∣ ∣ A X ∣ ∣ = 0 ⇔ X H A A H X = 0 ⇔ A H X = 0 AX=0\Leftrightarrow||AX||=0\Leftrightarrow X^{H}AA^{H}X=0\Leftrightarrow A^{H}X=0 AX=0∣∣AX∣∣=0XHAAHX=0AHX=0
引理2:若 A A A 正规 A X = λ X ⇒ A H X = λ ‾ X AX=\lambda X\Rightarrow A^{H}X=\overline{\lambda}X AX=λXAHX=λX
        ~~~~~~~        只 需 证 ( A − λ I ) H X = 0 ( A- \lambda I) ^HX= 0 (AλI)HX=0,
        ~~~~~~~         ( A − λ I ) X = 0 ⇒ ( ( A − λ I ) X ) H ( A − λ I ) X = 0 ⇒ X H ( A − λ I ) H ( A − λ I ) X = 0 ( A- \lambda I) X= 0\Rightarrow\left((A-\lambda I)X\right)^H(A-\lambda I)X=0\Rightarrow X^H(A-\lambda I)^H(A-\lambda I)X=0 (AλI)X=0((AλI)X)H(AλI)X=0XH(AλI)H(AλI)X=0
        ~~~~~~~         由于 A − λ I A-\lambda I AλI 正规, ( A − λ I ) H ( A − λ I ) = ( A − λ I ) ( A − λ I ) H ( A- \lambda I) ^H( A- \lambda I) = ( A- \lambda I) ( A- \lambda I) ^H (AλI)H(AλI)=(AλI)(AλI)H
        ~~~~~~~         即有 X H ( ( A − λ I ) H ) H ( A − λ I ) H X = 0 X^H((A-\lambda I)^H)^H(A-\lambda I)^HX=0 XH((AλI)H)H(AλI)HX=0
        ~~~~~~~         ⇒ ( ( A − λ I ) H X ) H ( A − λ I ) H X = ∣ ( A − λ I ) H X ∣ 2 = 0 \Rightarrow((A-\lambda I)^HX)^H(A-\lambda I)^HX=|(A-\lambda I)^HX|^2=0 ((AλI)HX)H(AλI)HX=(AλI)HX2=0
        ~~~~~~~         ⇒ ( A − λ I ) H X = 0 ⇒ ( A H − λ ‾ I ) X = 0 ⇒ A H X = λ ‾ X \Rightarrow(A-\lambda I)^HX=0\Rightarrow(A^H-\overline{\lambda}I)X=0\Rightarrow A^HX=\overline{\lambda}X (AλI)HX=0(AHλI)X=0AHX=λX
        ~~~~~~~         故结论得证,若 A A A 正规,则 A X = λ X ⟺ A H X = λ ‾ X AX=\lambda X\Longleftrightarrow A^HX=\overline{\lambda}X AX=λXAHX=λX
        ~~~~~~~         其中,若 λ ( A ) = { λ 1 , ⋯   , λ n } \lambda(A)=\{\lambda_1,\cdots,\lambda_n\} λ(A)={λ1,,λn},则 λ ( A H ) = { λ 1 ‾ , ⋯   , λ n ‾ } \lambda(A^H)=\{\overline{\lambda_1},\cdots,\overline{\lambda_n}\} λ(AH)={λ1,,λn}
下证 A x = λ 1 x , A y = λ 2 y Ax=\lambda_{1}x,Ay=\lambda_{2}y Ax=λ1x,Ay=λ2y x H y = 0 x^{H}y=0 xHy=0
y H A x = y H λ 1 x = λ 1 y H x y^{H}Ax=y^{H}\lambda_1x=\lambda_1y^{H}x yHAx=yHλ1x=λ1yHx
= ( A H y ) H x =(A^Hy)^{H}x =(AHy)Hx = ( λ ‾ 2 y ) H x =(\overline{\lambda}_2y)^{H}x =(λ2y)Hx = ( λ ‾ 2 y ) H x =(\overline{\lambda}_2y)^{H}x =(λ2y)Hx
= λ 2 y H x =\lambda_{2}y^{H}x =λ2yHx

例 3.4.6 A = [ 4 − 6 0 2 − 3 0 − 2 3 2 ] \mathbf{A}=\left[\begin{array}{ccc}4&-6&0\\2&-3&0\\-2&3&2\end{array}\right] A= 422633002 , 求 A \mathbf{A} A 的谱分解.
先求 A \mathbf{A} A 的特征值和特征向量. ∣ λ E − A ∣ = \mid\lambda E-A\mid= λEA∣= = λ ( λ − 2 ) ( λ − 1 ) =\lambda(\lambda-2)\left(\lambda-1\right) =λ(λ2)(λ1) , 因此, A \mathbf{A} A 有3个不同的特征值 λ 1 = 0 , λ 2 = 1 , λ 3 = 2 \lambda_1=0,\lambda_2=1,\lambda_3=2 λ1=0,λ2=1,λ3=2 , 故 A \mathbf{A} A 可对角化,从而 A \mathbf{A} A 的谱分解一定存在.容易求出它们对应的特征向量为
p 1 = ( 3 ,   2 ,   0 ) T , p 2 = ( 2 ,   1 ,   1 ) T , p 3 = ( 0 ,   0 ,   1 ) T . p_{1}=(3,\:2,\:0)^{\mathrm{T}},\quad p_{2}=(2,\:1,\:1)^{\mathrm{T}},\quad p_{3}=(0,\:0,\:1)^{\mathrm{T}}. p1=(3,2,0)T,p2=(2,1,1)T,p3=(0,0,1)T. P = ( p 1 , p 2 , p 3 ) = [ 3 2 0 2 1 0 0 1 1 ] \boldsymbol P=(p_1,p_2,p_3)=\begin{bmatrix}3&2&0\\[0.3em]2&1&0\\[0.3em]0&1&1\end{bmatrix} P=(p1,p2,p3)= 320211001 ,显然 , P P P 可逆,且易求得 P − 1 = ( β 1 T β 2 T β 3 T ) = ( − 1 2 0 2 − 3 0 − 2 3 1 ) \boldsymbol{P}^{-1}=\begin{pmatrix}\boldsymbol{\beta}_{1}^{\mathrm{T}}\\\boldsymbol{\beta}_{2}^{\mathrm{T}}\\\boldsymbol{\beta}_{3}^{\mathrm{T}}\end{pmatrix}=\begin{pmatrix}-1&2&0\\2&-3&0\\-2&3&1\end{pmatrix} P1= β1Tβ2Tβ3T = 122233001
这样有
A = P ( 0 1 2 ) P − 1 = ( p 1 , p 2 , p 3 ) ( 0 1 2 ) ( β 1 T β 2 T β 3 T ) = p 2 β 2 T + 2 p 3 β 3 T , \begin{aligned} &\boldsymbol{A}=\boldsymbol{P}\begin{pmatrix}0&&\\&1&\\&&2\end{pmatrix}\boldsymbol{P}^{-1}=(\boldsymbol{p}_1,\boldsymbol{p}_2,\boldsymbol{p}_3)\begin{pmatrix}0&&\\&1&\\&&2\end{pmatrix}\begin{pmatrix}\boldsymbol{\beta}_1^\mathrm{T}\\\boldsymbol{\beta}_2^\mathrm{T}\\\boldsymbol{\beta}_3^\mathrm{T}\end{pmatrix}=p_2\beta_2^\mathrm{T}+2p_3\beta_3^\mathrm{T}, \end{aligned} A=P 012 P1=(p1,p2,p3) 012 β1Tβ2Tβ3T =p2β2T+2p3β3T,

奇异值分解

A ∈ R m × n \boldsymbol A\in\mathbf{R}^{m\times n} ARm×n , 半正定矩阵 A T A \boldsymbol {A^\mathrm{T}A} ATA n n n 个特征值记为 λ i , i = 1 , 2 , . . . , n \lambda_i,i=1,2,...,n λi,i=1,2,...,n , 显然 λ i ⩾ 0 \lambda_i\geqslant0 λi0 . 称 λ i \lambda_i λi 的算术平方根 σ i = λ i \sigma_i=\sqrt{\lambda_i} σi=λi ( i = 1 , 2 , . . . , n ) i=1,2,...,n) i=1,2,...,n)为矩阵 A \boldsymbol A A奇异值.

定理 3.5.2 (奇异值分解定理) 设矩阵 A ∈ R m × n \boldsymbol A\in\mathbf{R}^{m\times n} ARm×n 的奇异值中有 r r r 个不等于零,记为 σ 1 ⩾ \sigma_1\geqslant σ1 σ 2 ≥ ⋯ ≥ σ r > 0. \sigma_2\geq\cdots\geq\sigma_r>0. σ2σr>0. 它们构成的 r r r 阶对角阵记为 D = diag ⁡ { σ 1 , σ 2 , ⋯   , σ r } D=\operatorname{diag}\{\sigma_1,\sigma_2,\cdots,\sigma_r\} D=diag{σ1,σ2,,σr} . 令 m × n m\times n m×n 阶矩阵 Σ = ( D   O O   O ) \boldsymbol{\Sigma}=\binom{\boldsymbol{D~O}}{\boldsymbol{O~O}} Σ=(O OD O) , 则存在正交矩阵 U ∈ R m × m ,   V ∈ R n × n \boldsymbol U\in\mathbb{R}^{m\times m},\:\boldsymbol V\in\mathbb{R}^{n\times n} URm×m,VRn×n ,使
A = U Σ V T . A=\boldsymbol U\boldsymbol{\Sigma}\boldsymbol V^{\mathrm{T}}. A=UΣVT.

例 6.10 求矩阵 A = [ 1 1 1 − 2 2 1 ] \mathbf{A}=\begin{bmatrix}1&1\\[0.3em]1&-2\\[0.3em]2&1\end{bmatrix} A= 112121 的奇异值分解.
A T A = [ 6 1 1 6 ] , \mathbf{A}^\mathrm{T}\mathbf{A}=\left[\begin{matrix}6&1\\1&6\end{matrix}\right], ATA=[6116], 其特征值为 λ 1 = 7 , λ 2 = 5 \lambda_1=7,\lambda_2=5 λ1=7,λ2=5 奇异值为 σ 1 = 7 , σ 2 = 5 \sigma_{1}=\sqrt{7},\sigma_{2}=\sqrt{5} σ1=7 ,σ2=5
A T A A^{\mathrm{T}}A ATA 的正交单位特征向量为 [ 1 2 1 2 ] , [ 1 2 − 1 2 ] . \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix},\quad\begin{bmatrix}\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\end{bmatrix}. [2 12 1],[2 12 1].于是
D = [ 7 0 0 5 ] , V = V T = [ 1 2 1 2 1 2 − 1 2 ] , U 1 = A V − 1 D − 1 = [ 1 1 1 − 2 2 1 ] [ 1 2 1 2 1 2 − 1 2 ] [ 1 7 0 0 − 1 5 ] = [ 2 14 0 − 1 14 3 10 3 14 1 10 ] , \begin{aligned} &\boldsymbol{D}=\begin{bmatrix}\sqrt{7}&0\\0&\sqrt{5}\end{bmatrix},\quad\boldsymbol{V}=\boldsymbol{V}^\mathrm{T}=\begin{bmatrix}\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\[0.3em]\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\end{bmatrix}, \\ &\boldsymbol{U}_1=\boldsymbol{A}\boldsymbol{V}^{-1}\boldsymbol{D}^{-1}=\begin{bmatrix}1&1\\1&-2\\2&1\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt{7}}&0\\0&-\frac{1}{\sqrt{5}}\end{bmatrix} =\begin{bmatrix}\frac{2}{\sqrt{14}}&0\\\\-\frac{1}{\sqrt{14}}&\frac{3}{\sqrt{10}}\\\\\frac{3}{\sqrt{14}}&\frac{1}{\sqrt{10}}\end{bmatrix}, \end{aligned} D=[7 005 ],V=VT=[2 12 12 12 1],U1=AV1D1= 112121 [2 12 12 12 1][7 1005 1]= 14 214 114 3010 310 1 ,
解线性方程组 { 2 x 1 − x 2 + 3 x 3 = 0 , 3 x 2 + x 3 = 0 , 得通解为  x = ( x 1 x 2 x 3 ) = k ( 5 1 − 3 ) , 取  k = 1 35 , 得  x 为单位向量 . 于是  U = [ 2 14 0 5 35 − 1 14 3 10 1 35 3 14 1 10 − 3 35 ] Σ = [ 7 0 0 5 0 0 ] . 容易验证此时  U Σ V T = A . \begin{aligned} &解线性方程组 \begin{cases}2x_1-x_2+3x_3=0,\\[2ex]3x_2+x_3=0,\end{cases} 得通解为 ~\boldsymbol{x}=\left(\begin{matrix}{x_{1}}\\\\{x_{2}}\\\\{x_{3}}\\\end{matrix}\right)=k\left(\begin{matrix}{5}\\{1}\\{-3}\\\end{matrix}\right), \text{取 }k=\frac{1}{\sqrt{35}},\\ &\text{得 }x\text{为单位向量}.\text{于是}~\boldsymbol{U}=\begin{bmatrix}\frac{2}{\sqrt{14}}&0&\frac{5}{\sqrt{35}}\\\\-\frac{1}{\sqrt{14}}&\frac{3}{\sqrt{10}}&\frac{1}{\sqrt{35}}\\\\\frac{3}{\sqrt{14}}&\frac{1}{\sqrt{10}}&-\frac{3}{\sqrt{35}}\end{bmatrix} \boldsymbol{\Sigma}=\begin{bmatrix}\sqrt{7}&0\\\\0&\sqrt{5}\\\\0&0\end{bmatrix}. 容易验证此时 ~U\Sigma V^{\mathrm{T}} =A. \end{aligned} 解线性方程组 2x1x2+3x3=0,3x2+x3=0,得通解为 x= x1x2x3 =k 513 , k=35 1, x为单位向量.于是 U= 14 214 114 3010 310 135 535 135 3 Σ= 7 0005 0 .容易验证此时 UΣVT=A.

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值