【矩阵论】6.总结3

6. 总结3

9 广义逆

定义9.1 给定矩阵 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n , 若存在矩阵 X ∈ R m × m X\in\mathbf{R}^{m\times m} XRm×m 满足下面四个方程( Penrose-Moore 方程组 )的全部或者一部分: ( 1 ) A X A = A ; (1)AXA=A; (1)AXA=A;    ( 2 ) X A X = X ; ~~(2)XAX=X;   (2)XAX=X;    ( 3 ) ( A X ) T = A X ~~( 3) ( AX) ^{\mathrm{T} }= AX   (3)(AX)T=AX    ( 4 ) ( X A ) T = X A ~~( 4) ( XA) ^{\mathrm{T} }= XA   (4)(XA)T=XA ,
则称 X X X A A A 的一个广义逆矩阵.

定理 4.1.3 Penrose-Moore 方程与条件等价 { X A A T = A T , X X T A T = X , \begin{cases}\boldsymbol{XAA}^\mathrm{T}=\boldsymbol{A}^\mathrm{T},\\\boldsymbol{XX}^\mathrm{T}\boldsymbol{A}^\mathrm{T}=\boldsymbol{X},\end{cases} {XAAT=AT,XXTAT=X,

证 首先证明条件 ( 1 ) A X A = A , ( 4 ) ( X A ) T = X A (1)AXA=A,(4)(XA)^{\mathrm{T}}=XA (1)AXA=A,(4)(XA)T=XA X A A T = A T XAA^\mathrm{T}=A^\mathrm{T} XAAT=AT 等价.
  ~  
将第四个方程代入第一个方程,有 A ( X A ) T = A . A(XA)^\mathrm{T}=A. A(XA)T=A. 两边取共轭转置,得 X A A T = A T . XAA^\mathrm{T}=A^\mathrm{T}. XAAT=AT.
  ~  
X T X^\mathrm{T} XT 右乘 (4.1) 的第一式,得 X A A T X T = A T X T , XAA^\mathrm{T}X^\mathrm{T}=A^\mathrm{T}X^\mathrm{T}, XAATXT=ATXT, ( X A ) ( X A ) T = ( X A ) T . (XA)(XA)^\mathrm{T}=(XA)^\mathrm{T}. (XA)(XA)T=(XA)T.
两边同时转置,得 ( X A ) ( X A ) T = X A , (XA)(XA)^\mathrm{T}=XA, (XA)(XA)T=XA, 由此得 ( X A ) T = X A . (XA)^\mathrm{T}=XA. (XA)T=XA. 将此式代人式(7.1)的第一式,
( X A ) T A T = A T , (XA)^\mathrm{T}A^\mathrm{T}=A^\mathrm{T}, (XA)TAT=AT,两边同时共轭转置,有 A X A = A . AXA=A. AXA=A.

  1. 设矩阵 P , Q \boldsymbol{P,Q} P,Q 可逆,则 Q − 1 A − P − 1 ∈ ( P A Q ) { 1 } ; \boldsymbol {Q^{-1}A^-}\boldsymbol{P}^{-1}\in(\boldsymbol{PAQ})\{1\}; Q1AP1(PAQ){1};

定理 4.2.2 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n, r a n k   A = r , P ∈ R m × m , Q ∈ R n × n , P \mathrm{rank}~A=r,\boldsymbol{P}\in\mathbf{R}^{m\times m},\boldsymbol{Q}\in\mathbf{R}^{n\times n},\boldsymbol{P} rank A=r,PRm×m,QRn×n,P Q \boldsymbol Q Q 可逆,且
P A Q = ( E r O O O ) , \boldsymbol{PAQ}=\begin{pmatrix}\boldsymbol{E_r}&\boldsymbol O\\\boldsymbol O&\boldsymbol O\end{pmatrix}, PAQ=(ErOOO), A { 1 } \boldsymbol{A}\{1\} A{1} 中任一矩阵可写成 Q [ E r X 12 X 21 X 22 ] P . \boldsymbol{Q}\begin{bmatrix}\boldsymbol{E}_r&\boldsymbol{X}_{12}\\\boldsymbol{X}_{21}&\boldsymbol{X}_{22}\end{bmatrix}\boldsymbol{P}. Q[ErX21X12X22]P.
其中 X 12 ∈ R r × ( n − r ) , X 21 ∈ R ( m − r ) × r , X 22 ∈ R ( n − r ) × ( m − r ) X_{12}\in\mathbf{R}^{r\times(n-r)},\quad X_{21}\in\mathbf{R}^{(m-r)\times r},\quad X_{22}\in\mathbf{R}^{(n-r)\times(m-r)} X12Rr×(nr),X21R(mr)×r,X22R(nr)×(mr) 为任意矩阵.

例 4.2.3 已知矩阵 A = ( 1 0 − 1 1 0 2 2 2 − 1 4 5 3 ) \mathbf{A}=\begin{pmatrix}1&0&-1&1\\[0.3em]0&2&2&2\\[0.3em]-1&4&5&3\end{pmatrix} A= 101024125123 A A A 的广义逆 A { 1 } A\{1\} A{1}.
B = [ 1 0 − 1 1 1 0 0 0 2 2 2 0 1 0 − 1 4 5 3 0 0 1 1 0 0 0 0 1 0 0 O 0 0 1 0 0 0 0 1 ] ≅ [ 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 0 0 0 1 − 2 1 1 0 1 − 1 0 1 − 1 − 1 O 0 0 1 0 0 0 0 1 ] \mathbf{B}=\begin{bmatrix}1&0&-1&1&1&0&0\\0&2&2&2&0&1&0\\-1&4&5&3&0&0&1\\1&0&0&0&&\\0&1&0&0&&\boldsymbol{O}\\0&0&1&0\\0&0&0&1\end{bmatrix}\cong\begin{bmatrix}1&0&0&0&1&0&0\\0&1&0&0&0&\frac{1}{2}&0\\0&0&0&0&1&-2&1\\1&0&1&-1\\0&1&-1&-1&&\boldsymbol{O}\\0&0&1&0\\0&0&0&1\end{bmatrix} B= 1011000024010012500101230001100010O001 10010000100100000111000011011010212O001
于是 P = [ 1 0 0 0 1 2 0 1 − 2 1 ] , Q = [ 1 0 1 − 1 0 1 − 1 − 1 0 0 1 0 0 0 0 1 ] \boldsymbol{P}=\begin{bmatrix}1&0&0\\0&\frac{1}{2}&0\\1&-2&1\end{bmatrix},\quad\boldsymbol{Q}=\begin{bmatrix}1&0&1&-1\\0&1&-1&-1\\0&0&1&0\\0&0&0&1\end{bmatrix} P= 1010212001 ,Q= 1000010011101101 因此, A A A 的任一个 { 1 } \{1\} {1} 逆可写成
X = Q [ 1 0 x 1 0 1 x 2 y 11 y 12 z 1 y 21 y 22 z 2 ] P \boldsymbol{X}=\boldsymbol{Q}\begin{bmatrix}1&0&x_1\\0&1&x_2\\y_{11}&y_{12}&z_1\\y_{21}&y_{22}&z_2\end{bmatrix}\boldsymbol{P} X=Q 10y11y2101y12y22x1x2z1z2 P, 其中 x i , y i j , z j ( i = 1 , 2 ; j = 1 , 2 ) x_{i} ,y_{ij},z_{j}(i=1,2;j=1,2) xi,yij,zj(i=1,2;j=1,2) 为任意实数.
若取 x i = y i j = z j = 0 ( i = 1 , 2 ; j = 1 , 2 ) , x_i=y_{ij}=z_j=0(i=1,2;j=1,2), xi=yij=zj=0(i=1,2;j=1,2), 则得到 A A A 的一个具体的 { 1 } \{1\} {1} 逆.
  ~  
                   A − = [ 1 0 1 − 1 0 1 − 1 − 1 0 0 1 0 0 0 0 1 ] [ 1 0 0 0 1 0 0 0 0 0 0 0 ] [ 1 0 0 0 1 2 0 1 − 2 1 ] = [ 1 0 0 0 1 2 0 0 0 0 0 0 0 ] ~~~~~~~~~~~~~~~~~~A^-=\begin{bmatrix}1&0&1&-1\\0&1&-1&-1\\0&0&1&0\\0&0&0&1\end{bmatrix}\quad\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\\0&0&0\end{bmatrix}\quad\begin{bmatrix}1&0&0\\0&\frac{1}{2}&0\\1&-2&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&\frac{1}{2}&0\\0&0&0\\0&0&0\end{bmatrix}                   A= 1000010011101101 100001000000 1010212001 = 1000021000000

行满秩矩阵有右逆 A R − 1 = A T ( A A T ) − 1 A_{R}^{-1} =A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1} AR1=AT(AAT)1 列满秩矩阵有左逆 A L − 1 = ( A T A ) − 1 A T . A_L^{-1}=(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}. AL1=(ATA)1AT.
行满秩 m × n m\times n m×n 矩阵 A A A右逆一般表达式 B = V A T ( A V A T ) − 1 , B=VA^{\mathrm{T}}(AVA^{\mathrm{T}})^{-1}, B=VAT(AVAT)1,
其中 V V V 是使等式 r a n k   A V A T = r a n k   A = m \mathrm{rank}~AVA^{\mathrm{T}}=\mathrm{rank}~A=m rank AVAT=rank A=m 成立的任意 n n n 阶方阵.
如果 A A A m × n m\times n m×n 列满秩矩阵,则 A A A左逆一般表达式 B = ( A T U A ) − 1 A T U , B=(A^\mathrm{T}UA)^{-1}A^\mathrm{T}U, B=(ATUA)1ATU,
其中 U U U 是使等式 r a n k   A T U A = rank ⁡ A = n \mathrm{rank}~ A^\mathrm{T} {U} {A}=\operatorname{rank}{A}=n rank ATUA=rankA=n 成立的任意 m m m 阶方阵.

满秩分解 A = B C , A=BC, A=BC, A − = C R − 1 B L − 1 A^-=C_R^{-1}B_L^{-1} A=CR1BL1

定理 4.3.2 任何矩阵 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n 都有自反广义逆.

证 如果 A = O A=\boldsymbol O A=O , 则 X = O X=\boldsymbol O X=O , 显然就是 A A A 的自反广义逆.
如果 A ≠ O A\neq\boldsymbol O A=O, rank A = r A=r A=r, 存在可逆矩阵 P P P Q Q Q , 使 P A Q = ( E r    O O     O ) . PAQ=\binom{E_r~~O}{O~~~O}. PAQ=(O   OEr  O).
结合减号逆的证明,直接验证可知矩阵 X = Q [ E r W V V W ] P \boldsymbol{X}=\boldsymbol{Q}\begin{bmatrix}\boldsymbol{E}_r&W\\V&VW\end{bmatrix}\boldsymbol{P} X=Q[ErVWVW]P A A A 的自反广义逆。

例 4.3.3 A = ( 1 0 0 1 1 1 2 1 1 ) \boldsymbol{A}=\begin{pmatrix}1&0&0\\[0.3em]1&1&1\\[0.3em]2&1&1\end{pmatrix} A= 112011011 试求A的自反广义逆.
解 由初等矩阵变换可知 P A Q = [ 1 0 0 − 1 1 0 − 1 − 1 1 ] [ 1 0 0 1 1 1 2 1 1 ] [ 1 0 0 0 1 − 1 0 0 1 ] = [ 1 0 0 0 1 0 0 0 0 ] . \boldsymbol{PAQ}=\begin{bmatrix}1&0&0\\-1&1&0\\-1&-1&1\end{bmatrix}\begin{bmatrix}1&0&0\\1&1&1\\2&1&1\end{bmatrix}\begin{bmatrix}1&0&0\\0&1&-1\\0&0&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}. PAQ= 111011001 112011011 100010011 = 100010000 .
A ( 1 , 2 ) = Q [ 1 0 w 1 0 1 w 2 v 1 v 2 v 1 w 1 + v 2 w 2 ] P \boldsymbol{A}^{(1,2)}=\boldsymbol{Q}\begin{bmatrix}1&0&w_1\\0&1&w_2\\\\v_1&v_2&v_1w_1+v_2w_2\end{bmatrix}\boldsymbol{P} A(1,2)=Q 10v101v2w1w2v1w1+v2w2 P, 其中 w i , v i ( i = 1 , 2 ) w_i,v_i(i=1,2) wi,vi(i=1,2) 可以取任意常数.

10 复合矩阵定义 简单算复合&加性复合矩阵

定义10.1 A A A m × n m\times n m×n 矩阵. 定义 Q k , m = { ( i 1 , … , i k ) ∣ 1 ≤ i , < ⋯ < i k ≤ n } Q_{k,m}=\{(i_{1},\ldots,i_{k})|1\leq i,<\cdots<i_{k}\leq n\} Qk,m={(i1,,ik)∣1i,<<ikn}
对于 1 ⩽ k ⩽ min ⁡ { m , n } 1\leqslant k\leqslant\min\{m,n\} 1kmin{m,n}, 定义 A A A k k k复合矩阵 C k ( A ) C_k(A) Ck(A) 如下:

C k ( A ) C_k(A) Ck(A) ( m k ) × ( n k ) \binom mk\times\binom nk (km)×(kn) 矩阵,它分别以 α ∈ Q k , m \alpha\in Q_{k,m} αQk,m β ∈ Q k . n {\beta}\in Q_{k.n} βQk.n 作为行标和列标,并均按字典式排序, C k ( A ) C_k({A}) Ck(A) ( α , β ) (\boldsymbol\alpha,\boldsymbol{\beta}) (α,β) 元是 det ⁡ A [ α ∣ β ] . \det\boldsymbol{A}[\boldsymbol{\alpha}|\boldsymbol{\beta}]. detA[αβ].

例,当 m = n = 3 , k = 2 m=n=3,k=2 m=n=3,k=2 时, C 2 ( A ) C_2(A) C2(A) 3 × 3 3×3 3×3 矩阵:
C 2 ( A ) = ( det ⁡ A [ 1 , 2 ∣ 1 , 2 ] det ⁡ A [ 1 , 2 ∣ 1 , 3 ] det ⁡ A [ 1 , 2 ∣ 2 , 3 ] det ⁡ A [ 1 , 3 ∣ 1 , 2 ] det ⁡ A [ 1 , 3 ∣ 1 , 3 ] det ⁡ A [ 1 , 3 ∣ 2 , 3 ] det ⁡ A [ 2 , 3 ∣ 1 , 2 ] det ⁡ A [ 2 , 3 ∣ 1 , 3 ] det ⁡ A [ 2 , 3 ∣ 2 , 3 ] ) . C_2(A)=\begin{pmatrix}\det A[1,2\mid1,2]&\det A[1,2\mid1,3]&\det A[1,2\mid2,3]\\\det A[1,3\mid1,2]&\det A[1,3\mid1,3]&\det A[1,3\mid2,3]\\\det A[2,3\mid1,2]&\det A[2,3\mid1,3]&\det A[2,3\mid2,3]\end{pmatrix}. C2(A)= detA[1,21,2]detA[1,31,2]detA[2,31,2]detA[1,21,3]detA[1,31,3]detA[2,31,3]detA[1,22,3]detA[1,32,3]detA[2,32,3] .

特别地,总有 C 1 ( A ) = A C_1({A})={A} C1(A)=A ; 当 m = n m=n m=n , C n ( A ) = ( det ⁡ A ) ,{C}_n({A})=(\det{A}) ,Cn(A)=(detA)(作为 1 阶方阵).

定义10.2 A A A n n n 阶方阵 , t ,t ,t 是不定元. 记 C k ( I n   +   t A ) C_{k}\left ( I_{n}\:+ \:t\mathbf{A} \right ) Ck(In+tA) = I ( n k ) \boldsymbol{I}_{{\binom nk}} I(kn) + t Δ k ( A ) t\Delta _{k}\left ( \boldsymbol{A}\right ) tΔk(A) + t 2 R t^{2}\boldsymbol{R} t2R ,
其中 Δ k ( A ) ∈ M ( n k ) ( C ) , R ∈ M ( n k ) ( C [ t ] ) . \Delta_k(\boldsymbol{A})\in M_{\binom nk}(\boldsymbol{C}),\boldsymbol{R}\in M_{\binom nk}(\mathbf{C}[t]). Δk(A)M(kn)(C),RM(kn)(C[t]). ( n k ) \binom nk (kn) 阶方阵 Δ k ( A ) \Delta_k(\boldsymbol{A}) Δk(A) A \boldsymbol{A} A k k k加性复合矩阵.

易知 k = 1 k=1 k=1 时, Δ 1 ( A ) = A ; \Delta_1(\boldsymbol{A})=\boldsymbol{A}; Δ1(A)=A; k = n k=n k=n , Δ n ( A ) = t r A . ,\Delta_n(\boldsymbol{A})=\mathrm{tr}\boldsymbol{A}. ,Δn(A)=trA.

C 1 ( I + t A ) = I + t A , C n ( I + t A ) = det ⁡ ( I + t A ) C_1(I+tA)=I+tA,C_n(I+tA)=\det(I+tA) C1(I+tA)=I+tA,Cn(I+tA)=det(I+tA) ( f ( t ) + 1 t 多项式 g ( t ) + 1 t 多项式 h ( t ) + 1 ) \begin{pmatrix}f(t)+1&&t多项式\\&g(t)+1&\\t多项式& &h(t)+1\end{pmatrix} f(t)+1t多项式g(t)+1t多项式h(t)+1 t t t 的一次项仅在 n n n 个对角元乘积 ( t a 11 + 1 ) ⋯ ( t a m + 1 ) (ta_{11}+1)\cdots(ta_{m}+1) (ta11+1)(tam+1) 中, 即 t r ( A ) tr(A) tr(A)

A = ( 1 2 3 1 2 3 ) , k = 2 A=\begin{pmatrix}1&2&3\\&1&2\\&&3\end{pmatrix},k=2 A= 121323 ,k=2
C 2 ( I 3 + t A ) = ( ( t + 1 ) 2 2 t ( t + 1 ) t 2 − 3 t 0 ( t + 1 ) ( t + 1 ) 2 t ( 3 t + 1 ) 0 0 ( t + 1 ) ( 3 t + 1 ) ) = I ( 3 2 ) + t ( 2 2 − 3 0 4 2 0 0 4 ) + t 2 ( 1 2 1 0 3 6 0 0 3 ) \begin{aligned}C_2(I_3+tA)&=\begin{pmatrix}(t+1)^2&2t(t+1)&t^2-3t\\0&(t+1)(t+1)&2t(3t+1)\\0&0&(t+1)(3t+1)\end{pmatrix}\\&=I_{\binom 32}+t\begin{pmatrix}2&2&-3\\0&4&2\\0&0&4\end{pmatrix}+t^2\begin{pmatrix}1&2&1\\0&3&6\\0&0&3\end{pmatrix}\end{aligned} C2(I3+tA)= (t+1)2002t(t+1)(t+1)(t+1)0t23t2t(3t+1)(t+1)(3t+1) =I(23)+t 200240324 +t2 100230163

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值