【矩阵论】2.矩阵方程

2 矩阵方程

2.1 矩阵直积(张量积)

定义 2.1.1 A A A , B B B 分别是 m × n m\times n m×n 阵和 p × q p\times q p×q 阵,定义 A ⊗ B = ( a 11 B ⋯ a 1 n B ⋮ ⋮ a m 1 B ⋯ a m n B ) . \left.A\otimes B = \left(\begin{matrix}a_{11}B&\cdots&a_{1n}B\\\vdots&&\vdots\\a_{m1}B&\cdots&a_{mn}B\end{matrix}\right.\right). AB= a11Bam1Ba1nBamnB .

若将 A ⊗ B A\otimes B AB 的行足标集视为 [ m ] × [ p ] [m]\times[p] [m]×[p],列足标集视为 [ n ] × [ q ] [n]\times[q] [n]×[q] ,则 ( A ⊗ B ) ( i , l ) × ( j , k ) = ( a i j B ) l k (A\otimes B)_{(i,l)\times(j,k)}=(a_{ij}B)_{lk} (AB)(i,l)×(j,k)=(aijB)lk .

性质 2.1.2 (1) a ( A ⊗ B ) = ( a A ) ⊗ B = A ⊗ ( a B ) a(A\otimes B)=(aA)\otimes B=A\otimes(aB) a(AB)=(aA)B=A(aB)

(2) ( A 11 ⋯ A 1 q ⋮ ⋮ A p 1 ⋯ A p q ) ⊗ B = ( A 11 ⊗ B ⋯ A 1 q ⊗ B ⋮ ⋮ A p 1 ⊗ B ⋯ A p q ⊗ B ) \left.\left(\begin{matrix}A_{11}&\cdots&A_{1q}\\\vdots&&\vdots\\A_{p1}&\cdots&A_{pq}\end{matrix}\right.\right)\otimes B=\left(\begin{matrix}A_{11}\otimes B&\cdots&A_{1q}\otimes B\\\vdots&&\vdots\\A_{p1}\otimes B&\cdots&A_{pq}\otimes B\end{matrix}\right) A11Ap1A1qApq B= A11BAp1BA1qBApqB

     ~~~~     矩阵直积的下列三个性质很容易验证:
(3) ( A 1 + A 2 ) ⊗ B = A 1 ⊗ B + A 2 ⊗ B (A_{1}+A_{2})\otimes B=A_{1}\otimes B+A_{2}\otimes B (A1+A2)B=A1B+A2B
(4) ( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) (A\otimes B) \otimes C=A\otimes (B\otimes C) (AB)C=A(BC)
(5) ( A ⊗ B ) T = A T ⊗ B T (A\otimes B)^T=A^T\otimes B^T (AB)T=ATBT

     ~~~~     和矩阵乘积一样,直积也不满足交换律。

(6) 一般地说,对 m × n m\times n m×n 矩阵 A \boldsymbol A A p × q p\times q p×q 矩阵 B \boldsymbol B B A ⊗ B ≠ B ⊗ A \boldsymbol A\otimes \boldsymbol B\neq \boldsymbol B\otimes \boldsymbol A AB=BA。但 A ⊗ B \boldsymbol A\otimes \boldsymbol B AB B ⊗ A \boldsymbol B\otimes \boldsymbol A BA 置换相抵,它们都是 m p × n q mp\times nq mp×nq 型的,而且可以通过对行的置换和对列的置换把 A ⊗ B \boldsymbol A\otimes \boldsymbol B AB 化成 B ⊗ A \boldsymbol B\otimes \boldsymbol A BA。形式地说,存在 m p mp mp 阶和 n q nq nq 阶置换方阵 P \boldsymbol P P Q \boldsymbol Q Q , 使 P ( A ⊗ B ) Q = B ⊗ A \boldsymbol P(\boldsymbol A\otimes \boldsymbol B)\boldsymbol Q=\boldsymbol B\otimes \boldsymbol A P(AB)Q=BA。特别地,当 m = n , p = q m=n,p=q m=n,p=q A ⊗ B \boldsymbol A\otimes \boldsymbol B AB B ⊗ A \boldsymbol B\otimes \boldsymbol A BA 置换相似,一定有 m p mp mp 阶置换方阵 P \boldsymbol P P ,使 P ( A ⊗ B ) P T = B ⊗ A \boldsymbol P(\boldsymbol A\otimes \boldsymbol B)\boldsymbol P^T=\boldsymbol B\otimes \boldsymbol A P(AB)PT=BA .

(7) 只要乘积 A C \boldsymbol {AC} AC B D \boldsymbol {BD} BD 都有意义,则 ( A ⊗ B ) ( C ⊗ D ) (\boldsymbol A\otimes \boldsymbol B)(\boldsymbol C\otimes \boldsymbol D) (AB)(CD) 也有意义,而且 ( A ⊗ B ) ( C ⊗ D ) = A C ⊗ B D . (\boldsymbol A\otimes \boldsymbol B)(\boldsymbol C\otimes \boldsymbol D)=\boldsymbol {AC}\otimes \boldsymbol {BD}. (AB)(CD)=ACBD.

证 设 A \boldsymbol A A C \boldsymbol C C 分别是 m × n m\times n m×n n × k n\times k n×k 矩阵, B \boldsymbol B B D \boldsymbol D D 分别是 p × q p\times q p×q q × r q\times r q×r 矩阵,则 A ⊗ B \boldsymbol A\otimes \boldsymbol B AB C ⊗ D \boldsymbol C\otimes \boldsymbol D CD 分别是 m p × n q mp\times nq mp×nq n q × k r nq\times kr nq×kr 矩阵,从而可以相乘.现在分别将 A ⊗ B \boldsymbol A\otimes \boldsymbol B AB C ⊗ D \boldsymbol C\otimes \boldsymbol D CD 作自然分块:
A ⊗ B = ( a 11 B ⋯ a 1 n B ⋮ ⋮ a m 1 B ⋯ a m n B ) , C ⊗ D = ( c 11 D ⋯ c 1 k D ⋮ ⋮ c n 1 D ⋯ c n k D ) . \boldsymbol{A}\otimes \boldsymbol{B}=\left({\begin{array}{ccc} {a_{11}\boldsymbol{B}}&\cdots&a_{1n}\boldsymbol{B}\\\vdots&&\vdots\\a_{m1}\boldsymbol{B}&\cdots&a_{mn}\boldsymbol{B}\end{array}}\right),\quad \boldsymbol{C}\otimes\boldsymbol{D}=\left(\begin{array}{ccc}{c_{11}\boldsymbol{D}}&\cdots&c_{1k}\boldsymbol{D}\\\vdots&&\vdots\\c_{n1}\boldsymbol{D}&\cdots&c_{nk}\boldsymbol{D}\end{array}\right). AB= a11Bam1Ba1nBamnB CD= c11Dcn1Dc1kDcnkD . ( A ⊗ B ) ( C ⊗ D ) (\boldsymbol A⊗\boldsymbol B)(\boldsymbol C⊗\boldsymbol D) (AB)(CD) ( i , j ) (i,j) (i,j) 块是 ∑ l = 1 n a i l B c l j D   = ( ∑ l = 1 n a i l c l j ) B D \sum_{l=1}^na_{il}\boldsymbol Bc_{lj}\boldsymbol D\:=(\sum_{l=1}^na_{il}c_{lj})\boldsymbol B\boldsymbol D l=1nailBcljD=(l=1nailclj)BD,右边正是 A C ⊗ B D \boldsymbol {AC}\otimes \boldsymbol {BD} ACBD ( i , j ) (i,j) (i,j) 块。

利用性质 (3) ~ (7) ,特别是性质 (5) ,可以得到更多的常用性质。在下列性质 (8) ~ (11) 中, A A A B B B 分别是 m m m 阶和 n n n 阶方阵.

(8) 设 A \boldsymbol{A} A, B \boldsymbol{B} B 都可逆,则 A ⊗ B \boldsymbol{A}\otimes \boldsymbol{B} AB 也可逆,且    ( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 ~~(\boldsymbol{A}\otimes \boldsymbol{B})^{-1}=\boldsymbol{A}^{-1}\otimes \boldsymbol{B}^{-1}   (AB)1=A1B1

(9)   det ⁡ ( A ⊗ B ) = ( det ⁡ A ) n ( det ⁡ B ) m \:\det(\boldsymbol{A}\otimes\boldsymbol{B})=(\det\boldsymbol{A})^n(\det\boldsymbol{B})^m det(AB)=(detA)n(detB)m

证 由于 A ⊗ B = ( A ⊗ I n ) ( I m ⊗ B ) \boldsymbol{A}\otimes \boldsymbol{B}=(\boldsymbol{A}\otimes \boldsymbol{I_n})(\boldsymbol{I_m}\otimes \boldsymbol{B}) AB=(AIn)(ImB),而 det ⁡ ( I m ⊗ B ) = ( det ⁡ B ) m \det(\boldsymbol{I_m}\otimes \boldsymbol{B})=(\det \boldsymbol{B})^m det(ImB)=(detB)m ,由 A ⊗ I n \boldsymbol{A}\otimes \boldsymbol{I_n} AIn 置换相似于 I n ⊗ A \boldsymbol{I_n}\otimes\boldsymbol{A} InA ,知 det ⁡ ( A ⊗ I n )   =   det ⁡ ( I n ⊗ A )   =   ( det ⁡ A ) n   \det(\boldsymbol{A}\otimes \boldsymbol{I_n})\:=\:\det(\boldsymbol{I_n}\otimes\boldsymbol{A})\:=\:(\det \boldsymbol{A})^n\: det(AIn)=det(InA)=(detA)n ,所以结论成立。

(10) rank ⁡ ( A ⊗ B ) = ( rank ⁡ A ) ( rank ⁡ B ) \operatorname{rank}(\boldsymbol{A}\otimes\boldsymbol{B})=(\operatorname{rank}\boldsymbol{A})(\operatorname{rank}\boldsymbol{B}) rank(AB)=(rankA)(rankB) .

证 记 rank ⁡ A = a \operatorname{rank}\boldsymbol A=a rankA=a , rank ⁡ B = b \operatorname{rank}\boldsymbol B=b rankB=b , 则有可逆方阵 U , V , R , S \boldsymbol {U,V,R,S} U,V,R,S , 使 U A V = ( I a O O O ) \boldsymbol {UAV}=\left(\begin{matrix}\boldsymbol{I}_a&\boldsymbol{O}\\ \boldsymbol{O}&\boldsymbol{O}\end{matrix}\right) UAV=(IaOOO) R B S = ( I b O O O ) \boldsymbol {RBS}=\left(\begin{matrix}\boldsymbol{I}_b&\boldsymbol{O}\\ \boldsymbol{O}&\boldsymbol{O}\end{matrix}\right) RBS=(IbOOO). 于是 ( U ⊗ R ) ( A ⊗ B ) ( V ⊗ S )   =   ( U A V ) ⊗ ( R B S )   (\boldsymbol U\otimes \boldsymbol R)(\boldsymbol A\otimes \boldsymbol B)(\boldsymbol V\otimes \boldsymbol S)\:=\:(\boldsymbol {UAV})\otimes(\boldsymbol {RBS})\: (UR)(AB)(VS)=(UAV)(RBS) ,易知等号右边矩阵的秩等于 a b ab ab .

(11) 设 S p e c A = { λ 1 , ⋯   , λ m }   , S p e c B = { μ 1   , ⋯   , μ n }   \mathrm{Spec}\boldsymbol{A}=\{\lambda_1,\cdots,\lambda_m\}\:,\mathrm{Spec}\boldsymbol{B}=\{\mu_1\:,\cdots,\mu_n\}\: SpecA={λ1,,λm},SpecB={μ1,,μn} ,则 S p e c ( A ⊗ B )   =   { λ i μ j   ∣   i   =   1 , ⋯   , m   ; j   =   1 , ⋯   , n   }   . \mathrm{Spec}(\boldsymbol A\otimes \boldsymbol B)\:=\:\{\lambda_i\mu_j\:|\:i\:=\:1,\cdots,m\:;j\:=\:1,\cdots,n\:\}\:. Spec(AB)={λiμji=1,,m;j=1,,n}.特别地, t r ( A ⊗ B ) = ( t r A ) ( t r B ) \mathrm tr(\boldsymbol A\otimes \boldsymbol B) = ( \mathrm tr\boldsymbol A) ( \mathrm tr\boldsymbol B) tr(AB)=(trA)(trB). 另外,若 A \boldsymbol A A B \boldsymbol B B 都相似于对角阵,则 A ⊗ B \boldsymbol A\otimes \boldsymbol B AB 也相似于对角阵。

证 设 R A R − 1 = T A , S B S − 1 = T B \boldsymbol {RAR^{-1}=T_A}, \boldsymbol {SBS^{-1}=T_B} RAR1=TA,SBS1=TB , 其中 T A , T B \boldsymbol T_A,\boldsymbol T_B TA,TB 都是上三角方阵 ( 从而它们的主对角线上的元素集分别是 S p e c A \mathrm {Spec}\boldsymbol A SpecA , S p e c B \mathrm {Spec}\boldsymbol B SpecB ) , 则 ( R ⊗ S ) ( A ⊗ B ) ( R ⊗ S ) − 1 = ( R A R − 1 ) ⊗ ( S B S − 1 ) = T A ⊗ T B . (\boldsymbol R\otimes \boldsymbol S)(\boldsymbol A\otimes \boldsymbol B)(\boldsymbol R\otimes \boldsymbol S)^{-1}=(\boldsymbol {RAR^{-1}})\otimes(\boldsymbol {SBS^{-1}})=\boldsymbol T_{A}\otimes \boldsymbol T_{B}. (RS)(AB)(RS)1=(RAR1)(SBS1)=TATB.不难验证 T A ⊗ T B \boldsymbol T_A\otimes \boldsymbol T_B TATB 也是上三角方阵,它的主对角线上的元素集正是 { λ i μ j ∣ i = \{\lambda_i\mu_j\mid i= {λiμji= 1 , ⋯   , m , j = 1 , ⋯   , n } 1,\cdots,m,j=1,\cdots,n\} 1,,m,j=1,,n} . 当 T A , T B \boldsymbol T_A ,\boldsymbol T_B TA,TB 都是对角阵时, T A ⊗ T B \boldsymbol T_A\otimes \boldsymbol T_B TATB 也是对角阵.

2.2 矩阵方程 AXB = C

定义 A ^ \widehat{A} A A = ( a i j ) A=(a_{ij}) A=(aij)拉长向量 A ^ = ( a 11 , ⋯   , a 1 n , a 21 , ⋯   , a 2 n , ⋯   ) T \hat{A}=(a_{11},\cdots, a_{1n},a_{21},\cdots ,a_{2n},\cdots)^{T} A^=(a11,,a1n,a21,,a2n,)T。则 ( λ A + μ B ) ^ = λ A ^ + μ B ^ \widehat{(\lambda A+\mu B)}=\lambda\widehat{A}+\mu\widehat{B} (λA+μB) =λA +μB

定理 2.2.1 A X B ^ = ( A ⊗ B T ) ⋅ X ^ \widehat{AXB}=(A\otimes B^{T})\cdot\widehat{X} AXB =(ABT)X

证:显然 A X B ^ \widehat{AXB} AXB 的每个分量都是 X ^ \widehat{X} X 的线性组合。
A = ( a i j ) m × n A=\left(a_{ij}\right)_{m\times n} A=(aij)m×n , X = ( x i j ) n × p X=\left(x_{ij}\right)_{n\times p} X=(xij)n×p , B = ( b i j ) p × q B=\left(b_{ij}\right)_{p\times q} B=(bij)p×q , X = ( X 1 ⋮ X n ) X=\left(\begin{array}{c}X_1\\\vdots\\X_n\end{array}\right) X= X1Xn ,则 X ^ = ( X 1 T ⋮ X n T ) \widehat{X}=\left(\begin{array}{c}X_1^T\\\vdots\\X_n^T\end{array}\right) X = X1TXnT .
A X B = ( ( a 11 X 1 + ⋯ + a 1 n X n ) B ⋮ ( a m 1 X 1 + ⋯ + a m n X n ) B ) AXB=\begin{pmatrix}(a_{11}X_1+\cdots+a_{1n}X_n)B\\\vdots\\(a_{m1}X_1+\cdots+a_{mn}X_n)B\end{pmatrix} AXB= (a11X1++a1nXn)B(am1X1++amnXn)B
从而
A X B ^ = ( ( a 11 X 1 + ⋯ + a 1 n X n ) B , ⋯   , ( a m 1 X 1 + ⋯ + a m n X n ) B ) T = ( B T ( a 11 X 1 T + ⋯ + a 1 n X n T ) ⋮ B T ( a m 1 X 1 T + ⋯ + a m n X n T ) ) = ( a 11 B T ⋯ a 1 n B T ⋮ ⋮ a m 1 B T ⋯ a m n B T ) ( X 1 T ⋮ X n T ) \begin{aligned} \widehat{AXB}&=(\begin{array}{cccc}{(a_{11}X_{1}+\cdots+a_{1n}X_{n})B,}&{\cdots,}&{(a_{m1}X_{1}+\cdots+a_{mn}X_{n})B}\\\end{array})^{T}\\ \\ &\left.=\left(\begin{array}{c}B^T\left(a_{11}X_1^T+\cdots+a_{1n}X_n^T\right)\\\vdots\\ B^T\left(a_{m1}X_1^T+\cdots+a_{mn}X_n^T\right)\end{array}\right.\right) =\left(\begin{array}{ccc}a_{11}B^T&\cdots&a_{1n}B^T\\\vdots&\vdots\\a_{m1}B^T&\cdots&a_{mn}B^T\end{array}\right)\left(\begin{array}{c}X_1^T\\\vdots\\X_n^T\end{array}\right) \\ \end{aligned} AXB =((a11X1++a1nXn)B,,(am1X1++amnXn)B)T= BT(a11X1T++a1nXnT)BT(am1X1T++amnXnT) = a11BTam1BTa1nBTamnBT X1TXnT

故存在矩阵 M M M 使 A X B ^ = M X ^ \widehat{AXB}=M\widehat{X} AXB =MX 。以下往证 M = A ⊗ B T M=A\otimes B^{T} M=ABT

  1. M M M 的行集合 = = = A X B ^ \widehat{AXB} AXB 的行集合 = = = [ m ] × [ q ] [m]\times [q] [m]×[q] M M M 的列集合 = = = A X B ^ \widehat{AXB} AXB 的列集合 = = = [ n ] × [ p ] [n]\times [p] [n]×[p],任取 ( i , j ) ∈ [ m ] × [ q ] , ( i , k ) ∈ [ n ] × [ p ] (i,j)\in[m]\times [q],(i,k)\in[n]\times [p] (i,j)[m]×[q],(i,k)[n]×[p],相应的 M M M 元记作 m ( i , j ) ( l , k ) m_{(i,j)(l,k)} m(i,j)(l,k)
  2. M X ^ M\widehat{X} MX ( i , j ) (i,j) (i,j) 行元 = ∑ i , j m ( i , j ) ( l , k ) x l k =\sum_{i,j}m_{(i,j)(l,k)}x_{lk} =i,jm(i,j)(l,k)xlk
  3. A X B ^ \widehat{AXB} AXB ( i , j ) (i,j) (i,j) 行元 = ( A X B ) i j = ( a i 1 , ⋯   , a i n ) ( x 11 x 12 ⋯ x 1 p ⋮ ⋮ ⋮ x n 1 x n 2 ⋯ x n p ) ( b 1 j ⋮ b p j ) =(AXB)_{ij}=(a_{i1},\cdots,a_{in})\begin{pmatrix}x_{11}&x_{12}&\cdots&x_{1p}\\\varvdots&\varvdots&\varvdots\\x_{n1}&x_{n2}&\cdots&x_{np}\end{pmatrix}\begin{pmatrix}b_{1j}\\\varvdots\\b_{pj}\end{pmatrix} =(AXB)ij=(ai1,,ain) x11xn1x12xn2x1pxnp b1jbpj ,其中 x l k x_{lk} xlk 的系数为 a i l b k j a_{il}b_{kj} ailbkj
  4. m ( i , j ) ( l , k ) = a i l b k j = ( A ⊗ B T ) ( i , j ) ( l , k ) m_{(i,j)(l,k)}=a_{il}b_{kj}=(A\otimes B^{T})_{(i,j)(l,k)} m(i,j)(l,k)=ailbkj=(ABT)(i,j)(l,k) .

由此拉长公式, A X B = C ⇔ A X B ^ = C ^ ⇔ ( A ⊗ B T ) X ^ = C ^ AXB=C\Leftrightarrow\widehat{AXB}=\widehat{C}\Leftrightarrow(A\otimes B^{T})\widehat{X}=\widehat{C} AXB=CAXB =C (ABT)X =C 化为普通线性方程。
· A X B = C AXB=C AXB=C 有解的充要条件为 r ( A ⊗ B T ∣ C ⃗ ) = r ( A ⊗ B T ) r(A\otimes B^T\mid\vec{C})=r(A\otimes B^T) r(ABTC )=r(ABT) .
· 齐次方程 A X B = 0 AXB=0 AXB=0 的基础解系含有 n p − r ( A ⊗ B T ) = n p − r ( A ) r ( B ) np-r(A\otimes B^T)=np-r(A)r(B) npr(ABT)=npr(A)r(B) 个无关向量。

习题: 求矩阵 P P P 使得 A B ^ = P B ^ \widehat{AB}=P\widehat{B} AB =PB , 矩阵 Q Q Q 使得 A B ^ = Q A ^ \widehat{AB}=Q\widehat{A} AB =QA

解: A B E ^ = ( A ⊗ E T ) B ^ \widehat{ABE}=(A\otimes E^{T})\widehat{B} ABE =(AET)B , E A B ^ = ( E ⊗ B T ) A ^ \widehat{EAB}=(E\otimes B^{T})\widehat{A} EAB =(EBT)A

2.3 方程 AX - XB = C 的解

A ∈ C m × m \boldsymbol A\in \mathbb C^{m\times m} ACm×m , B ∈ C n × n \boldsymbol B\in \mathbb C^{n\times n} BCn×n , C ∈ C m × n \boldsymbol C\in \mathbb C^{m\times n} CCm×n , 且 X ∈ C m × n \boldsymbol X\in \mathbb C^{m\times n} XCm×n 是未知矩阵( A X − X B \boldsymbol {AX-XB} AXXB 只有当 A \boldsymbol A A B \boldsymbol B B 分别是 m m m 阶和 n n n 阶方阵时才有意义).
A X − X B = C ⇔ ( A X − X B ) ^ = C ^ ⇔ A X ^ − X B ^ = C ^ ⇔ A X I n ^ − I m X B ^ = C ^ ⇔ ( A ⊗ I n − I m ⊗ B T ) X ^ = C ^ , \begin{gathered} \boldsymbol {AX-XB}=\boldsymbol C\Leftrightarrow \widehat{(\boldsymbol {AX-XB})}=\widehat{\boldsymbol C}\Leftrightarrow \widehat{\boldsymbol {AX}}-\widehat{\boldsymbol {XB}}=\widehat{\boldsymbol C}\\ \Leftrightarrow \widehat{\boldsymbol {AXI_n}}-\widehat{\boldsymbol {I_mXB}}=\widehat{\boldsymbol C} \Leftrightarrow (\boldsymbol A\otimes \boldsymbol {I_n}-\boldsymbol {I_m}\otimes \boldsymbol B^\mathrm{T})\widehat{\boldsymbol X}=\widehat{\boldsymbol C}, \end{gathered} AXXB=C(AXXB) =C AX XB =C AXIn ImXB =C (AInImBT)X =C ,方程 A X − X B = C \boldsymbol {AX-XB=C} AXXB=C 还可以写成线性方程组 ( A ⊗ I n − I m ⊗ B T ) X ^ = C ^ (\boldsymbol A\otimes \boldsymbol {I_n}-\boldsymbol {I_m}\otimes \boldsymbol B^\mathrm{T})\widehat{\boldsymbol X}=\widehat{\boldsymbol C} (AInImBT)X =C ,它的系数矩阵是 m n mn mn 阶方阵。

若记 S p e c A = { λ 1 , ⋯   , λ m } \mathrm{Spec}\boldsymbol {A}= \left \{ \lambda_1, \cdots , \lambda_m\right \} SpecA={λ1,,λm} , S p e c B = { μ 1 , ⋯   , μ n } \mathrm{Spec}\boldsymbol{B}=\left \{ \mu_1, \cdots , \mu_n\right \} SpecB={μ1,,μn} , 则由 2.2 节的性质 (11),可知 S p e c ( A ⊗ I n − I m ⊗ B T )   = { λ i − μ j   ∣   i = 1 , ⋯   , m ; j = 1 , ⋯   , n }   . \mathrm{Spec}(\mathbf{A}\otimes\mathbf{I}_{n}-\mathbf{I}_{m}\otimes\mathbf{B}^{\mathrm{T}})\:=\{\lambda_{i}-\mu_{j}\:|\:i=1,\cdots,m;j=1,\cdots,n\}\:. Spec(AInImBT)={λiμji=1,,m;j=1,,n}.

证: 设 S − 1 A S = J A , R − 1 B R = J B S^{-1}AS=J_{A},R^{-1}BR=J_{B} S1AS=JA,R1BR=JB ,
( S − 1 ⊗ R − 1 ) ( A ⊗ I n − I m ⊗ B T ) ( S ⊗ R ) = ( S − 1 A S ) ⊗ R − 1 I n R − ( S − 1 I m S ) ⊗ ( R − 1 B T R ) = J A ⊗ I n − I m ⊗ J B T \begin{aligned}&(S^{-1}\otimes R^{-1})(A\otimes I_{n}- I_{m}\otimes B^{T})(S\otimes R)\\&=(S^{-1}AS)\otimes R^{-1}I_{n}R-(S^{-1}I_{m}S)\otimes(R^{-1}B^{T}R)\\&=J_{A}\otimes I_{n}-I_{m}\otimes J_{B^{T}}\end{aligned} (S1R1)(AInImBT)(SR)=(S1AS)R1InR(S1ImS)(R1BTR)=JAInImJBT
再看三角阵的全部对角元。

定理 2.3.1 矩阵方程 A X − X B = C \boldsymbol {AX-XB=C} AXXB=C 有唯一解
       ⟺ ( A ⊗ I n − I m ⊗ B T ) X ^ = C ^ ⟺ 系数行列式不为  0 ⟺ A 和 B 无公共特征值 ~~~~~~\begin{aligned}&\Longleftrightarrow(\mathbf{A}\otimes\mathbf{I}_{n}-\mathbf{I}_{m}\otimes\mathbf{B}^{\mathrm{T}})\widehat{\mathbf X}=\widehat{\mathbf C}\\&\Longleftrightarrow\text{系数行列式不为 }0\\&\Longleftrightarrow \mathbf A和 \mathbf B 无公共特征值\end{aligned}       (AInImBT)X =C 系数行列式不为 0AB无公共特征值

推论 2.3.2 A = ( A 1 ⋱ A l ) \boldsymbol A=\begin{pmatrix}\boldsymbol A_1&&\\&\ddots\\&&\boldsymbol A_l\end{pmatrix} A= A1Al B = ( B 11 ⋯ B 1 l ⋮ B l 1 ⋯ B l l ) \boldsymbol B=\begin{pmatrix}\boldsymbol B_{11}&\cdots&\boldsymbol B_{1l}\\\varvdots\\\boldsymbol B_{l1}&\cdots&\boldsymbol B_{ll}\end{pmatrix} B= B11Bl1B1lBll
其中(1)当 i ≠ j i\neq j i=j 时, A i , A j \boldsymbol A_i,\boldsymbol A_j Ai,Aj无公共特征值,(2) A B = B A \boldsymbol {AB=BA} AB=BA
B \boldsymbol B B 的所有非对角块部是 0 0 0

证: A B = B A ⇒ A i B i j = B i j A i ⇒ B i j 是 A i X − X A j = 0 的解 又 i ≠ j 时 A i 与 A j 无公共特征值 A i X − X A j = 0 有唯一解 ⇒ 只有零解 ⇒ B i j = 0 i ≠ j AB=BA\Rightarrow A_iB_{ij}=B_{ij}A_i\Rightarrow B_{ij}\text{是}A_{i}X-XA_{j}=0\text{的解}\\\text{又}i\neq j{时}A_i\text{与}A_j\text{无公共特征值}\\A_iX-XA_j=0\text{有唯一解}\Rightarrow 只有零解\Rightarrow B_{ij}=0\quad i\neq j AB=BAAiBij=BijAiBijAiXXAj=0的解i=jAiAj无公共特征值AiXXAj=0有唯一解只有零解Bij=0i=j

2.4 方程 AX - XB = 0 的解

首先把 A \boldsymbol A A B \boldsymbol B B 分别化成 Jordan 标准形 J A \boldsymbol J_\mathrm{\mathrm{A}} JA J B \boldsymbol J_{\mathrm{B}} JB,即有可逆方阵 S \boldsymbol S S T \boldsymbol T T,使
S − 1 A S = J A = ( λ 1 I p 1   +   H p 1   )   ⊕   ⋯   ⊕   ( λ u I p u   +   H p u   ) (   p 1   +   ⋯   +   p u   =   m   )   , T − 1 B T = J B = ( μ 1 I q 1 + H q 1 ) + ◯ ⋯ + ◯ ( μ v I q v + H q v ) (   q 1   +   ⋯   +   q v   =   n   )   , 因此                                                                                                             A X =   X B ⇔ S J A S − 1 X   =   X T J B T − 1 ⇔ J A ( S − 1 X T )   =   ( S − 1 X T ) J B \begin{gathered} S^{-1}AS=J_{A} =(\lambda_{1}I_{p_{1}}\:+\:H_{p_{1}}\:)\:\oplus\:\cdots\:\oplus\:(\lambda_{u}I_{p_{u}}\:+\:H_{p_{u}}\:) \\ (\:p_1\:+\:\cdots\:+\:p_u\:=\:m\:)\:, \\ T^{-1}BT=J_B =(\mu_1I_{q_1}+H_{q_1})\textcircled{+}\cdots\textcircled{+}(\mu_vI_{q_v}+H_{q_v}) \\ (\:q_1\:+\:\cdots\:+\:q_v\:=\:n\:)\:, \\ \text{因此~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\\ \begin{aligned}AX&=\:XB\quad\Leftrightarrow\quad\mathbf{S}J_AS^{-1}X\:=\:XTJ_BT^{-1}\\&\Leftrightarrow\quad J_A(S^{-1}XT)\:=\:(S^{-1}XT)J_B\end{aligned} \end{gathered} S1AS=JA=(λ1Ip1+Hp1)(λuIpu+Hpu)(p1++pu=m),T1BT=JB=(μ1Iq1+Hq1)++(μvIqv+Hqv)(q1++qv=n),因此                                                                                                            AX=XBSJAS1X=XTJBT1JA(S1XT)=(S1XT)JB若记 S − 1 X T = Y S^{-1}XT=Y S1XT=Y,则只要讨论方程 J A Y = Y J B J_AY=YJ_B JAY=YJB

现将 m × n m\times n m×n 矩阵 Y Y Y 的行按 J A J_\mathrm{A} JA 的分法,列按 J B J_{B} JB 的分法作分块,记所得分块矩阵为 Y = ( Y i j ) Y=(Y_{ij}) Y=(Yij),其中 Y i j Y_{ij} Yij p i × q j p_i\times q_j pi×qj 矩阵,则方程 J A Y = Y J B J_AY=YJ_B JAY=YJB 等价于 u v uv uv 个方程 ( λ i I p i   +   H p i   )   Y i j   =   Y i j   (   μ j I q j   +   H q j   ) (   i   =   1 , ⋯   , u   ; j   =   1 , ⋯   , v   )   . (\lambda_{i}I_{p_{i}}\:+\:H_{p_{i}}\:)\:Y_{ij}\:=\:Y_{ij}\:(\:\mu_{j}I_{q_{j}}\:+\:H_{q_{j}}\:)\quad(\:i\:=\:1,\cdots,u\:;j\:=\:1,\cdots,v\:)\:. (λiIpi+Hpi)Yij=Yij(μjIqj+Hqj)(i=1,,u;j=1,,v). λ i ≠ μ j \lambda_i\neq\mu_j λi=μj 时, A A A, B B B 没有公共特征值,方程只有唯一解,可知 Y i j = 0. Y_{ij}=\mathbf{0}. Yij=0.

λ i = μ j \lambda_i=\mu_j λi=μj 时,方程成为 H p i Y i j = Y i j H q j H_{p_i}Y_{ij}=Y_{ij}H_{q_j} HpiYij=YijHqj.这时,若记 Y i j = ( y k l ) Y_{ij}=(y_{kl}) Yij=(ykl),则
H p i Y i j = ( y 21 ⋯ y 2 q j ⋮ ⋮ y p i 1 ⋯ y p i q j 0 ⋯ 0 ) , Y i j H q j = ( 0 y 11 ⋯ y 1. q j − 1 0 y 21 ⋯ y 2. q j − 1 ⋮ ⋮ ⋮ 0 y p i 1 ⋯ y p i ⋅ q j − 1 ) . \begin{gathered}\boldsymbol{H}_{p_{i}}\boldsymbol{Y}_{ij}=\left(\begin{array}{cccc}y_{21}&\cdots&y_{2q_{j}}\\\vdots&&\vdots\\y_{p_{i}1}&\cdots&y_{p_{i}q_{j}}\\0&\cdots&0\end{array}\right),\boldsymbol{Y}_{ij}\boldsymbol{H}_{q_{j}}=\left(\begin{array}{cccc}0&y_{11}&\cdots&y_{1.q_{j}-1}\\0&y_{21}&\cdots&y_{2.q_{j}-1}\\\vdots&\vdots&&\vdots\\0&y_{p_{i}1}&\cdots&y_{p_{i}\cdot q_{j}-1}\end{array}\right).\end{gathered} HpiYij= y21ypi10y2qjypiqj0 ,YijHqj= 000y11y21ypi1y1.qj1y2.qj1ypiqj1 .
这两个 p i × q j p_i\times q_j pi×qj 矩阵相等,当且仅当 Y i j Y_{ij} Yij有下列形式:
p i = q j p_i=q_j pi=qj 时, Y i j = [ y 0 y 1 ⋯ y p i − 1 y 0 ⋱ ⋮ 0 ⋱ y 1 y 0 ] ; \boldsymbol{Y}_{ij}=\begin{bmatrix}y_0&y_1&\cdots&y_{p_i-1}\\&y_0&\ddots&\vdots\\&\mathbf{0}&\ddots&y_1\\&&&y_0\end{bmatrix}; Yij= y0y1y00ypi1y1y0 ;

p i < q j p_i<q_j pi<qj 时, Y i j = [ 0 0 y 0 y 1 ⋯ y p i − 1 0 0 0 y 0 ⋯ y p i − 2 0 0 0 0 ⋯ y 0 ] ; \boldsymbol{Y}_{ij}=\begin{bmatrix}0&0&y_0&y_1&\cdots&y_{p_i-1}\\0&0&0&y_0&\cdots&y_{p_i-2}\\0&0&0&0&\cdots&y_0\end{bmatrix}; Yij= 000000y000y1y00ypi1ypi2y0 ;

p i > q j p_i>q_j pi>qj 时, Y i j = [ y 0 y 1 ⋯ y q j − 1 0 y 0 ⋯ y q j − 2 ⋮ ⋮ ⋯ ⋮ 0 0 ⋯ y 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 0 ] , \boldsymbol{Y}_{ij}=\begin{bmatrix}y_0&y_1&\cdots&y_{q_j-1}\\0&y_0&\cdots&y_{q_j-2}\\\vdots&\vdots&\cdots&\vdots\\0&0&\cdots&y_0\\0&0&\cdots&0\\\vdots&\vdots&&\vdots\\0&0&\cdots&0\end{bmatrix}, Yij= y00000y1y0000yqj1yqj2y000 ,

其中 min ⁡ { p i , p j } \min\{p_i,p_j\} min{pi,pj} 个参数 y 0 , y 1 , . . . y_0,y_1,... y0,y1,... 可任取.

由此可知 J A Y − Y J B = 0 J_AY-YJ_B=0 JAYYJB=0 的线性无关解的个数等于 ∑ min ⁡ { p i , q i } \sum\min\{p_i,q_i\} min{pi,qi},这里 ∑ \sum 是对所有满足 λ i = μ j ( 1 ⩽ i ⩽ u ; 1 ⩽ j ⩽ v ) \lambda_i=\mu_j(1\leqslant i\leqslant u;1\leqslant j\leqslant v) λi=μj(1iu;1jv) 的整数对( i , j i,j i,j )求和。这个结论也可以表述如下:

定理 2.3 A A A 的初等因子是 { ( λ − λ i ) p i ∣ i = 1 , ⋯   , μ } \left\{(\lambda-\lambda_i)^{p_i}\mid i=1,\cdots,\mu\right\} {(λλi)pii=1,,μ} , B B B 的初等因子是 { ( λ − μ j ) q j ∣ j = 1 , ⋯   , v } \{(\lambda-\mu_j)^{q_j}\mid j=1,\cdots,v\} {(λμj)qjj=1,,v},则方程 A X − X B = 0 AX-XB=0 AXXB=0 的线性无关解的个数是 ∑ i = 1 u ∑ i = 1 v d i j \sum_{i=1}^u\sum_{i=1}^vd_{ij} i=1ui=1vdij, 这里 d i d_i di 表示 ( λ − λ i ) p i ( \lambda-\lambda_i)^{p_i} (λλi)pi ( λ − μ j ) q i (\lambda-\mu_j)^{q_i} (λμj)qi 的最大公因式的次数.

例 2.4 A A A 的初等因子是 { ( λ − 1 ) 2 , ( λ − 1 ) 3 , ( λ − 2 ) 3 } \{(\lambda-1)^2,(\lambda-1)^3,(\lambda-2)^3\} {(λ1)2,(λ1)3,(λ2)3} , B B B 的初等因子是
{ ( λ − 1 ) 2 , ( λ − 1 ) 2 , ( λ − 2 ) 4 } \{(\lambda-1)^2,(\lambda-1)^2,(\lambda-2)^4\} {(λ1)2,(λ1)2,(λ2)4} , 则方程 J A Y − Y J B = 0 J_AY-YJ_B=0 JAYYJB=0 的一般解是
Y = ( a b c d 0 a 0 c 0 e f g h 0 e 0 g 0 0 0 0 0 0 i j k 0 0 i j 0 0 0 0 0 i ) \left.\boldsymbol{Y}=\left(\begin{array}{cc:cc:ccc} a&b&c&d&&\\ 0&a&0&c&&\mathbf{0}\\ \hdashline e&f&g&h&&\\0&e&0&g&&\mathbf{0}\\ 0&0&0&0&&\\ \hdashline&&&&0&i&j&k\\ &&&&0&0&i&j\\ \mathbf{0}&&\mathbf{0}&&0&0&0&i\\ \end{array}\right.\right) Y= a0e000bafe0c0g000dchg000000i00ji0kji

  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值