【矩阵论】4.广义逆矩阵

4. 广义逆矩阵

在线性代数里,对于线性方程组 A x = b Ax=b Ax=b ,如果方阵 A A A是非奇异的,则存在唯一的 A A A
逆矩阵 A − 1 A^{-1} A1, 满足等式 A A − 1 = A − 1 A = E , AA^{-1}=A^{-1}A=E, AA1=A1A=E, 从而该线性方程组具有唯一的解 x = A − 1 b x= A^{- 1}b x=A1b .

逆矩阵具有许多良好的性质和用途.遗憾的是,现实经常遇到奇异方阵或 m × n ( m ≠ n ) m\times n(m\neq n) m×n(m=n) 的长方形矩阵 A A A . 对于这样一类的矩阵,也希望能构造具有通常逆矩阵的若干性质的矩阵以便于实际应用. 这样的矩阵被称为广义逆,或称伪逆.

4.1 广义逆矩阵的概念

Moore 在 1920 年给出的矩阵的广义逆的概念如下.
定义 4.1.1 给定矩阵 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n , 若存在矩阵 X ∈ R n × m X\in\mathbf{R}^{n\times m} XRn×m 满足
A X = P R ( A ) , X A = P R ( X )   , AX=P_{R(A)},\quad XA=P_{R(X)}\:, AX=PR(A),XA=PR(X),则称 X X X A A A 的一个广义逆矩阵.这里 P L P_L PL 表示在子空间 L L L 上的正交投影矩阵.

1955 年英国剑桥大学的 Penrose 提出如下的定义.
定义 4.1.2 给定矩阵 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n , 若存在矩阵 X ∈ R m × m X\in\mathbf{R}^{m\times m} XRm×m 满足下面四个方程( Penrose-Moore 方程组 )的全部或者一部分:
( 1 ) A X A = A ; (1)AXA=A; (1)AXA=A;    ( 2 ) X A X = X ; ~~(2)XAX=X;   (2)XAX=X;    ( 3 ) ( A X ) T = A X ~~( 3) ( AX) ^{\mathrm{T} }= AX   (3)(AX)T=AX    ( 4 ) ( X A ) T = X A ~~( 4) ( XA) ^{\mathrm{T} }= XA   (4)(XA)T=XA ,
则称 X X X A A A 的一个广义逆矩阵.

为了不同的目的,可以定义不同意义的广义逆 . 若一矩阵 X ∈ R n × m X\in\mathbb{R}^{n\times m} XRn×m 满足四个中的第 i i i j j j 个方程,则称 X X X A { i , j } A\left\{i,j\right\} A{i,j} 的广义逆矩阵,记为 x ∈ A ( i , j ) x\in A^{( i, j) } xA(i,j) .

X X X 只满足条件一,则 X ∈ A { 1 } X\in A{\{1\}} XA{1} , 此时称 X X X A A A 的一个 { 1 } \{1\} {1} 减号逆, 记作 A − A^- A A ( 1 ) A^{(1)} A(1);
X X X 满足第一和二个条件,则 X ∈ A { 1 , 2 } X\in A\{1,2\} XA{1,2} ,此时称 X X X A A A 的一个 { 1 , 2 } \{1,2\} {1,2}自反广义逆,记作 A ( 1 , 2 ) ; A^{(1,2)}; A(1,2);
X X X 满足所有四个条件,则 X ∈ A { 1 , 2 , 3 , 4 } X\in A\{1,2,3,4\} XA{1,2,3,4},此时称 X X X A A A 的一个 { 1 , 2 , 3 , 4 } \{1,2,3,4\} {1,2,3,4} ,或加号逆,记作 A + A^+ A+ A ( 1 , 2 , 3 , 4 ) . A^{(1,2,3,4)}. A(1,2,3,4).

根据定义中广义逆矩阵满足的条件的不同,广义逆矩阵共有 C 4 1 + C 4 2 + C 4 3 + C 4 4 = 15 \mathrm{C}_4^1+\mathrm{C}_4^2+\mathrm{C}_4^3+\mathrm{C}_4^4=15 C41+C42+C43+C44=15 种.

下面的定理给出 Penrose-Moore 方程的一个等价形式.
定理 4.1.3 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n , 矩阵 X ∈ R n × m X\in\mathbf{R}^{n\times m} XRn×m 且满足四个 Penrose-Moore 方程,则 Penrose-Moore 方程与下面的条件等价.
{ X A A T = A T , X X T A T = X , (4.1) \begin{cases}\boldsymbol{XAA}^\mathrm{T}=\boldsymbol{A}^\mathrm{T},\\\boldsymbol{XX}^\mathrm{T}\boldsymbol{A}^\mathrm{T}=\boldsymbol{X},\end{cases}\tag{4.1} {XAAT=AT,XXTAT=X,(4.1)

证 首先证明条件 ( 1 ) A X A = A , ( 4 ) ( X A ) T = X A (1)AXA=A,(4)(XA)^{\mathrm{T}}=XA (1)AXA=A,(4)(XA)T=XA X A A T = A T XAA^\mathrm{T}=A^\mathrm{T} XAAT=AT 等价.
  ~  
将第四个方程代入第一个方程,有 A ( X A ) T = A . A(XA)^\mathrm{T}=A. A(XA)T=A.
两边取共轭转置,得 X A A T = A T . XAA^\mathrm{T}=A^\mathrm{T}. XAAT=AT.
  ~  
X T X^\mathrm{T} XT 右乘 (4.1) 的第一式,得 X A A T X T = A T X T , XAA^\mathrm{T}X^\mathrm{T}=A^\mathrm{T}X^\mathrm{T}, XAATXT=ATXT, ( X A ) ( X A ) T = ( X A ) T . (XA)(XA)^\mathrm{T}=(XA)^\mathrm{T}. (XA)(XA)T=(XA)T.
两边同时转置,得 ( X A ) ( X A ) T = X A , (XA)(XA)^\mathrm{T}=XA, (XA)(XA)T=XA,
由此得 ( X A ) T = X A . (XA)^\mathrm{T}=XA. (XA)T=XA. 将此式代人式(7.1)的第一式,
( X A ) T A T = A T , (XA)^\mathrm{T}A^\mathrm{T}=A^\mathrm{T}, (XA)TAT=AT,两边同时共轭转置,
A X A = A . AXA=A. AXA=A.
  ~  
同理可证 Penrose-Moore 方程中的 X A X = X , ( A X ) T = A X XAX=X,(AX)^{\mathrm{T}}=AX XAX=X,(AX)T=AX X X T A T = X XX^\mathrm{T}A^\mathrm{T}=X XXTAT=X 等价.

4.2 减号逆

定义 4.2.1 给定矩阵 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n,若存在矩阵 X ∈ R n × m X\in\mathbf{R}^{n\times m} XRn×m ,使 A X A = A , AXA=A, AXA=A, X ∈ A { 1 } . \boldsymbol{X}\in\boldsymbol{A}\{1\}. XA{1}. 此时称 X X X A A A 的一个 { 1 } \{1\} {1} 逆,也称 减号逆(或称 A A A g \boldsymbol g g 逆), 记作 A ( 1 ) A^{(1)} A(1) A − . A^{-}. A.

矩阵 A A A 的所有 { 1 } \{1\} {1}逆的全体记为 A { 1 } A\{1\} A{1} , 即 A { 1 } = { X ∣ A X A = A } . A\{1\}=\{X\mid AXA=A\}. A{1}={XAXA=A}.

例 4.2.2 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n, 且 A A A 可写为分块矩: A = ( E r O O O ) , \boldsymbol{A}=\begin{pmatrix}\boldsymbol{E_r}&\boldsymbol O\\\boldsymbol O&\boldsymbol O\end{pmatrix}, A=(ErOOO), 其中 E r E_r Er r r r 阶方阵. 利用定义求 A { 1 } A\{1\} A{1}.
解 设 X ∈ A { 1 } X\in A\{1\} XA{1} , 则 X X X n × m n\times m n×m 矩阵,将 X X X 适当分块 X = ( X 11 X 12 X 21 X 22 ) , \boldsymbol{X}=\begin{pmatrix}\boldsymbol{X}_{11}&\boldsymbol{X}_{12}\\\boldsymbol{X}_{21}&\boldsymbol{X}_{22}\end{pmatrix}, X=(X11X21X12X22),其中, X 11 ∈ R r × r , X 12 ∈ R r × ( m − r ) , X 21 ∈ R ( n − r ) × r , X 22 ∈ R ( n − r ) × ( m − r ) X_{11}\in\mathbf{R}^{r\times r},X_{12}\in\mathbf{R}^{r\times(m-r)},X_{21}\in\mathbf{R}^{(n-r)\times r},X_{22}\in\mathbf{R}^{(n-r)\times(m-r)} X11Rr×r,X12Rr×(mr),X21R(nr)×r,X22R(nr)×(mr),于是
A X A = ( E r O O O ) ( X 11 X 12 X 21 X 22 ) ( E r O O O ) = ( X 11 O O O ) , AXA=\begin{pmatrix}E_r&O\\O&O\end{pmatrix}\begin{pmatrix}X_{11}&X_{12}\\X_{21}&X_{22}\end{pmatrix}\begin{pmatrix}E_r&O\\O&O\end{pmatrix}=\begin{pmatrix}X_{11}&O\\O&O\end{pmatrix}, AXA=(ErOOO)(X11X21X12X22)(ErOOO)=(X11OOO), A X A = A AXA=A AXA=A X 11 = E r X_{11}=E_r X11=Er , 即 A { 1 } \boldsymbol{A}\{1\} A{1}中的任意一个矩阵可写成 X = ( E r X 12 X 21 X 22 ) , X=\begin{pmatrix}E_r&X_{12}\\X_{21}&X_{22}\end{pmatrix}, X=(ErX21X12X22),
其中 X 12 ∈ R r × ( m − r ) , X 21 ∈ R ( n − r ) × r , X 22 ∈ R ( n − r ) × ( m − r ) X_{12}\in\mathbf{R}^{r\times(m-r)},X_{21}\in\mathbf{R}^{(n-r)\times r},X_{22}\in\mathbf{R}^{(n-r)\times(m-r)} X12Rr×(mr),X21R(nr)×r,X22R(nr)×(mr) 为任意矩阵.

A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n , 广义逆矩阵 A − ∈ A { 1 } \boldsymbol{A}^-\in\boldsymbol{A}\{1\} AA{1} 具有如下性质:

  1. ( A − ) T = ( A T ) − ( \boldsymbol{A}^{- }) ^{\mathrm{T} }= ( \boldsymbol{A}^{\mathrm{T} }) ^{- } (A)T=(AT) ;
  2. 任取 λ ∈ R , λ + A − ∈ ( λ A ) { 1 } \lambda\in\mathbf{R},\lambda^+A^-\in(\lambda\mathbf{A})\{1\} λR,λ+A(λA){1}, 其中 λ + =   { λ − 1 , λ ≠ 0 , 0 , λ = 0   ; \lambda^+=\:\begin{cases}\lambda^{-1},&\lambda\neq0,\\0,&\lambda=0\:;\end{cases} λ+={λ1,0,λ=0,λ=0;
  3. r a n k A − ⩾ r a n k A \mathrm{rank} A^-\geqslant \mathrm{rank} A rankArankA ;
  4. A A − \boldsymbol{A}\boldsymbol{A}^- AA A − A \boldsymbol{A}^-\boldsymbol{A} AA 都是幂等矩阵,且 r a n k A A − = r a n k A − A = r a n k A \mathrm{rank} \boldsymbol{A}\boldsymbol{A}^- = \mathrm{rank} \boldsymbol{A}^- \boldsymbol{A}= \mathrm{rank} \boldsymbol{A} rankAA=rankAA=rankA ;
  5. 设矩阵 P , Q \boldsymbol{P,Q} P,Q 可逆,则 Q − 1 A − P − 1 ∈ ( P A Q ) { 1 } ; \boldsymbol {Q^{-1}A^-}\boldsymbol{P}^{-1}\in(\boldsymbol{PAQ})\{1\}; Q1AP1(PAQ){1};

A A − A = A A{A}^{- }A=A AAA=A
(1) A T ( A − ) T A T = ( A A − A ) T = A T A^\mathrm{T}(A^-)^\mathrm{T}A^\mathrm{T}=(AA^-A)^\mathrm{T}=A^\mathrm{T} AT(A)TAT=(AAA)T=AT , 所以 ( A − ) T ∈ A T { 1 } . (A^-)^\mathrm{T}\in A^\mathrm{T}\{1\}. (A)TAT{1}.
(2) 若 λ = 0 \lambda=0 λ=0, 由定义知零矩阵就是零矩阵的一个 { 1 } \{1\} {1} 逆. 若 λ ≠ 0 \lambda\neq0 λ=0, 则 λ A = ( λ A ) ( λ − 1 A − ) ( λ A ) \lambda\boldsymbol{A}=(\lambda\boldsymbol{A})(\lambda^{-1}\boldsymbol{A}^{-})(\lambda\boldsymbol{A}) λA=(λA)(λ1A)(λA), 故 λ + A ∈ ( λ A ) { 1 } \lambda ^+ \boldsymbol{A}\in ( \lambda \boldsymbol{A}) \{ 1\} λ+A(λA){1} .
(3) 两个矩阵之积的秩小于等于这两个矩阵中任一个矩阵的秩, rank ⁡ A = rank ⁡ A A − A ⩽ rank ⁡ A A − ⩽ rank ⁡ A − . \operatorname{rank}A=\operatorname{rank}AA^-A\leqslant\operatorname{rank}AA^-\leqslant\operatorname{rank}A^-. rankA=rankAAArankAArankA.
(4) ( A − A ) 2 = A − A A − A = A − ( A A − A ) = A − A   ,   ( A A − ) 2 = A A − A A − = ( A A − A ) A − = A A − , (A^{-}A)^{2}=A^{-}AA^{-}A=A^{-}(AA^{-}A)=A^{-}A~,~(AA^{-})^{2}=AA^{-}AA^{-}=(AA^{-}A)A^{-}=AA^{-}, (AA)2=AAAA=A(AAA)=AA , (AA)2=AAAA=(AAA)A=AA,
因为 rank ⁡ A = rank ⁡ A A − A ⩽ rank ⁡ A A − ⩽ rank ⁡ A \operatorname{rank}A=\operatorname{rank}AA^{-}A\leqslant\operatorname{rank}AA^{-}\leqslant\operatorname{rank}A rankA=rankAAArankAArankA , 故式中只能等号成立。
同理则 r a n k A A − = r a n k A − A = r a n k A \mathrm{rank} \boldsymbol{A}\boldsymbol{A}^- = \mathrm{rank} \boldsymbol{A}^- \boldsymbol{A}= \mathrm{rank} \boldsymbol{A} rankAA=rankAA=rankA .
(5) ( P A Q ) ( Q − 1 A − P − 1 ) ( P A Q ) = P A Q , (PAQ)(Q^{-1}A^{-}P^{-1})(PAQ)=PAQ, (PAQ)(Q1AP1)(PAQ)=PAQ,

定理 4.2.2 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n, r a n k   A = r , P ∈ R m × m , Q ∈ R m × n , P \mathrm{rank}~A=r,\boldsymbol{P}\in\mathbf{R}^{m\times m},\boldsymbol{Q}\in\mathbf{R}^{m\times n},\boldsymbol{P} rank A=r,PRm×m,QRm×n,P Q \boldsymbol Q Q 可逆,且
P A Q = ( E r O O O ) , \boldsymbol{PAQ}=\begin{pmatrix}\boldsymbol{E_r}&\boldsymbol O\\\boldsymbol O&\boldsymbol O\end{pmatrix}, PAQ=(ErOOO), A { 1 } \boldsymbol{A}\{1\} A{1} 中任一矩阵可写成 Q [ E r X 12 X 21 X 22 ] P . \boldsymbol{Q}\begin{bmatrix}\boldsymbol{E}_r&\boldsymbol{X}_{12}\\\boldsymbol{X}_{21}&\boldsymbol{X}_{22}\end{bmatrix}\boldsymbol{P}. Q[ErX21X12X22]P.
其中 X 12 ∈ R r × ( n − r ) , X 21 ∈ R ( m − r ) × r , X 22 ∈ R ( n − r ) × ( m − r ) X_{12}\in\mathbf{R}^{r\times(n-r)},\quad X_{21}\in\mathbf{R}^{(m-r)\times r},\quad X_{22}\in\mathbf{R}^{(n-r)\times(m-r)} X12Rr×(nr),X21R(mr)×r,X22R(nr)×(mr) 为任意矩阵.

由例 4.2.2 及性质(5) 即可推出本定理 .

定理 4.2.2 给出了求 A − A^{-} A 的另外一种计算方法.
算出一个矩阵 A A A的 {1} 逆,必须先求出可逆矩阵 P P P Q Q Q ,使 P A Q PAQ PAQ 成为标准形.
为此可以先构造分块矩阵 B = [ A E m E n O ] . \boldsymbol{B}=\begin{bmatrix}\boldsymbol{A}&\boldsymbol{E}_m\\\boldsymbol{E}_n&\boldsymbol{O}\end{bmatrix}. B=[AEnEmO]. 用行和列初等变换把 B B B 中的 A A A 化成标准形 A ~ = ( E r O O O ) \widetilde{\boldsymbol{A}}=\begin{pmatrix}\boldsymbol{E_r}&\boldsymbol O\\\boldsymbol O&\boldsymbol O\end{pmatrix} A =(ErOOO) . 同时 , E n ,E_n ,En 化成了 Q , E m Q,E_{_m} Q,Em 化成了 P P P, 即 ( P O O E n ) ( A E m E n O ) ( Q O O E m ) = ( A ~ P Q O ) , \binom{\boldsymbol{P}\quad\boldsymbol{O}}{\boldsymbol{O}\quad\boldsymbol{E}_n}\binom{\boldsymbol{A}\quad\boldsymbol{E}_m}{\boldsymbol{E}_n\quad\boldsymbol{O}}\binom{\boldsymbol{Q}\quad\boldsymbol{O}}{\boldsymbol{O}\quad\boldsymbol{E}_m}=\binom{\widetilde{\boldsymbol{A}}\quad\boldsymbol{P}}{\boldsymbol{Q}\quad\boldsymbol{O}}, (OEnPO)(EnOAEm)(OEmQO)=(QOA P),于是 A { 1 } A\{1\} A{1} 中的矩阵可写成 X = Q [ E r X 12 X 21 X 22 ] P . \boldsymbol{X}=\boldsymbol{Q}\begin{bmatrix}\boldsymbol{E}_r&\boldsymbol{X}_{12}\\\boldsymbol{X}_{21}&\boldsymbol{X}_{22}\end{bmatrix}\boldsymbol{P}. X=Q[ErX21X12X22]P.

定理 4.2.2 表明 A − \boldsymbol{A}^- A 是存在的,即 A { 1 } \boldsymbol{A}\{1\} A{1} 是非空集合.
由于 X 12 , X 21 , X 22 \boldsymbol{X}_{12},\boldsymbol{X}_{21},\boldsymbol{X}_{22} X12,X21,X22 中的元素可任取,故当 A A A 不是可逆方阵时, A − A^- A 不唯一.

例 4.2.3 已知矩阵 A = ( 1 0 − 1 1 0 2 2 2 − 1 4 5 3 ) \mathbf{A}=\begin{pmatrix}1&0&-1&1\\[0.3em]0&2&2&2\\[0.3em]-1&4&5&3\end{pmatrix} A= 101024125123 A A A 的广义逆 A { 1 } A\{1\} A{1}.
B = [ 1 0 − 1 1 1 0 0 0 2 2 2 0 1 0 − 1 4 5 3 0 0 1 1 0 0 0 0 1 0 0 O 0 0 1 0 0 0 0 1 ] ≅ [ 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 0 0 0 1 − 2 1 1 0 1 − 1 0 1 − 1 − 1 O 0 0 1 0 0 0 0 1 ] \mathbf{B}=\begin{bmatrix}1&0&-1&1&1&0&0\\0&2&2&2&0&1&0\\-1&4&5&3&0&0&1\\1&0&0&0&&\\0&1&0&0&&\boldsymbol{O}\\0&0&1&0\\0&0&0&1\end{bmatrix}\cong\begin{bmatrix}1&0&0&0&1&0&0\\0&1&0&0&0&\frac{1}{2}&0\\0&0&0&0&1&-2&1\\1&0&1&-1\\0&1&-1&-1&&\boldsymbol{O}\\0&0&1&0\\0&0&0&1\end{bmatrix} B= 1011000024010012500101230001100010O001 10010000100100000111000011011010212O001
于是 P = [ 1 0 0 0 1 2 0 1 − 2 1 ] , Q = [ 1 0 1 − 1 0 1 − 1 − 1 0 0 1 0 0 0 0 1 ] \boldsymbol{P}=\begin{bmatrix}1&0&0\\0&\frac{1}{2}&0\\1&-2&1\end{bmatrix},\quad\boldsymbol{Q}=\begin{bmatrix}1&0&1&-1\\0&1&-1&-1\\0&0&1&0\\0&0&0&1\end{bmatrix} P= 1010212001 ,Q= 1000010011101101 因此, A A A 的任一个 { 1 } \{1\} {1} 逆可写成
X = Q [ 1 0 x 1 0 1 x 2 y 11 y 12 z 1 y 21 y 22 z 2 ] P \boldsymbol{X}=\boldsymbol{Q}\begin{bmatrix}1&0&x_1\\0&1&x_2\\y_{11}&y_{12}&z_1\\y_{21}&y_{22}&z_2\end{bmatrix}\boldsymbol{P} X=Q 10y11y2101y12y22x1x2z1z2 P, 其中 x i , y i j , z j ( i = 1 , 2 ; j = 1 , 2 ) x_{i} ,y_{ij},z_{j}(i=1,2;j=1,2) xi,yij,zj(i=1,2;j=1,2) 为任意实数.
若取 x i = y i j = z j = 0 ( i = 1 , 2 ; j = 1 , 2 ) , x_i=y_{ij}=z_j=0(i=1,2;j=1,2), xi=yij=zj=0(i=1,2;j=1,2), 则得到 A A A 的一个具体的 { 1 } \{1\} {1} 逆.
  ~  
                   A − = [ 1 0 1 − 1 0 1 − 1 − 1 0 0 1 0 0 0 0 1 ] [ 1 0 0 0 1 0 0 0 0 0 0 0 ] [ 1 0 0 0 1 2 0 1 − 2 1 ] = [ 1 0 0 0 1 2 0 0 0 0 0 0 0 ] ~~~~~~~~~~~~~~~~~~A^-=\begin{bmatrix}1&0&1&-1\\0&1&-1&-1\\0&0&1&0\\0&0&0&1\end{bmatrix}\quad\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\\0&0&0\end{bmatrix}\quad\begin{bmatrix}1&0&0\\0&\frac{1}{2}&0\\1&-2&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&\frac{1}{2}&0\\0&0&0\\0&0&0\end{bmatrix}                   A= 1000010011101101 100001000000 1010212001 = 1000021000000

下述定理:已知某一个 { 1 } \{1\} {1} 逆后求得所有 A − A^- A 的一般表达式.

定理 4.2.4 A ∈ R m × n , A − ∈ A { 1 } A\in\boldsymbol{R}^{m\times n},A^{-}\in\boldsymbol{A}\{1\} ARm×n,AA{1} A {A} A 的某一个 {1} 逆,则
( 1 ) X = A − + U − A − A U A A − ∈ A { 1 } (1)\boldsymbol{X}=\boldsymbol{A}^-+\boldsymbol{U}-\boldsymbol{A}^-\boldsymbol{A}\boldsymbol{U}\boldsymbol{A}\boldsymbol{A}^-\in\boldsymbol{A}{\{1\}} (1)X=A+UAAUAAA{1} , 矩阵 U ∈ R n × m \boldsymbol{U}\in\mathbf{R}^{n\times m} URn×m 是任意实矩阵;
( 2 ) X = A − + V ( I m − A A − ) + ( I n − A − A ) U (2)\boldsymbol{X}=\boldsymbol{A}^{-}+\boldsymbol{V}(\boldsymbol{I}_m-\boldsymbol{A}\boldsymbol{A}^{-})+(\boldsymbol{I}_n-\boldsymbol{A}^{-}\boldsymbol{A})\boldsymbol{U} (2)X=A+V(ImAA)+(InAA)U , 矩阵 U V ∈ R n × m \boldsymbol{UV}\in\mathbf{R}^{n\times m} UVRn×m 是任意实矩阵,也是 A A A 的某一个 { 1 } \{1\} {1} 逆,且 A { 1 } \boldsymbol{A}\{1\} A{1} 中任何一个矩阵都可以表示成上述形式。

证 先证明 X ∈ A { 1 } X\in A\{1\} XA{1} . 事实上,
  ~  
AXA = A ( A − + U − A − A U A A − ) A = A A − A + A U A − ( A A − A ) U ( A A − A ) = A + A U A − A U A = A , AXA = A ( A − + V ( I m − A A − ) + ( I n − A − A ) U ) A = A A − A + A V ( I m − A A − ) A + A ( I n − A − A ) U A = A A − A + A V ( A − A A − A ) + ( A − A A − A ) U A = A , \qquad\qquad\qquad\begin{aligned}\text{AXA}&=A(A^-+U-A^-AUAA^-)A\\&=AA^-A+AUA-(AA^-A)U(AA^-A)\\&=A+AUA-AUA=A,\\ \text{AXA}&=A(A^-+V(I_m-AA^-)+(I_n-A^-A)U)A\\&=AA^-A+AV(I_m-AA^-)A+A(I_n-A^-A)UA\\&=AA^-A+AV(A-AA^-A)+(A-AA^-A)UA=A,\end{aligned} AXAAXA=A(A+UAAUAA)A=AAA+AUA(AAA)U(AAA)=A+AUAAUA=A,=A(A+V(ImAA)+(InAA)U)A=AAA+AV(ImAA)A+A(InAA)UA=AAA+AV(AAAA)+(AAAA)UA=A,
X ∈ A { 1 } . X\in A\{1\}. XA{1}.
  ~  
再设任给 X ∈ A { 1 } X\in A\{1\} XA{1}, 则 A ( X − A − ) A = A X A − A A − A = A − A = 0. A(X-A^-)A=AXA-AA^-A=A-A=0. A(XA)A=AXAAAA=AA=0.
U = X − A − U=X-A^- U=XA, 则 A U A = O AUA=O AUA=O, 于是 A − A U A A − = O A^-AUAA^-=O AAUAA=O, 故
X = A − + U − A − A U A A − . X=A^-+U-A^-AUAA^-. X=A+UAAUAA. V = X − A − , U = X A A − , V=X-A^-,\quad U=XAA^-, V=XA,U=XAA,
X = A − + V ( I m − A A − ) + ( I n − A − A ) U . X=A^-+V(I_m-AA^-)+(I_n-A^-A)U. X=A+V(ImAA)+(InAA)U. A { 1 } \boldsymbol{A}\{1\} A{1} 中任何一个矩阵都可以表示成上述形式.

除了使用定义和定理4.2.2 的初等变换以外,还可以利用矩阵的满秩分解来求 A − . A^{-}. A.

已知 A ∈ R m × n , m ⩽ n A\in\mathbf{R}^{m\times n},m\leqslant n ARm×n,mn r a n k A = m \mathrm{rank}\boldsymbol{A}=m rankA=m 时,称 A A A 为行满秩矩阵,当 m ⩾ n m\geqslant n mn r a n k A = n \mathrm{rank}\boldsymbol{A}=n rankA=n 时,称 A A A 为列满秩矩阵.

对于行满秩矩阵,有如下定义:
定义4.2.5 A ∈ R m × n ( m ⩽ n ) A\in\mathbf{R}^{m\times n}(m\leqslant n) ARm×n(mn) 是行满秩矩阵,如果存在一个 n × m n\times m n×m 矩阵 B \boldsymbol B B , 使得
A B = E , AB=E, AB=E,成立,则称 B B B A A A 的右逆,并记为 A R − 1 . A_R^{-1}. AR1. 由于 A A T AA^\mathrm{T} AAT m m m 阶满秩方阵,故
( A A T ) ( A A T ) − 1 = ( A A T ) − 1 ( A A T ) = E , (AA^\mathrm{T})(AA^\mathrm{T})^{-1}=(AA^\mathrm{T})^{-1}(AA^\mathrm{T})=E, (AAT)(AAT)1=(AAT)1(AAT)=E, A A A 的右逆为 A R − 1 = A T ( A A T ) − 1 A_{R}^{-1} =A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1} AR1=AT(AAT)1

A = ( 1 2 − 1 0 − 1 2 ) A=\begin{pmatrix}1&2&-1\\0&-1&2\end{pmatrix} A=(102112) A A A 的右逆 A R − 1 . A_R^{-1}. AR1.
解 由 rank A = 2 \boldsymbol{A}=2 A=2 , 知 A \boldsymbol{A} A 为列满秩矩阵,所以
A R − 1 = A T ( A A T ) − 1 = [ 1 0 2 − 1 − 1 2 ] [ [ 1 2 − 1 0 − 1 2 ] [ 1 0 2 − 1 − 1 2 ] ] − 1 = 1 14 [ 5 4 6 2 3 8 ] . \begin{aligned} &A_{R}^{-1}=A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1} =\begin{bmatrix}1&&0\\2&&-1\\-1&&2\end{bmatrix}\left[\begin{bmatrix}1&&2&&-1\\0&&-1&&2\end{bmatrix}\begin{bmatrix}1&&0\\2&&-1\\-1&&2\end{bmatrix}\right]^{-1} \\ &=\frac{1}{14}\begin{bmatrix}5&&4\\6&&2\\[0.3em]3&&8\end{bmatrix}. \\ \end{aligned} AR1=AT(AAT)1= 121012 [102112] 121012 1=141 563428 .

定义 4.2.6 A ∈ R m × n ( m ⩾ n ) A\in\mathbf{R}^{m\times n}(m\geqslant n) ARm×n(mn) 是列满秩矩阵,如果存在一个 n × m n\times m n×m 矩阵 B \boldsymbol B B ,使得
B A = E , BA=E, BA=E,成立,则称 B B B A A A 的左逆,并记为 A L − 1 . A_L^{-1}. AL1.由于 A T A A^\mathrm{T}A ATA n n n 阶满秩方阵,故
( A T A ) ( A T A ) − 1 = ( A T A ) − 1 ( A T A ) = E . (A^\mathrm{T}A)(A^\mathrm{T}A)^{-1}=(A^\mathrm{T}A)^{-1}(A^\mathrm{T}A)=E. (ATA)(ATA)1=(ATA)1(ATA)=E. A A A 的左逆为 A L − 1 = ( A T A ) − 1 A T . A_L^{-1}=(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}. AL1=(ATA)1AT.

A = ( 1 2 2 1 1 1 ) , \mathbf{A}=\begin{pmatrix}1&2\\2&1\\1&1\end{pmatrix}, A= 121211 , A A A 的左逆 A L − 1 . A_L^{-1}. AL1.
解 由 rank A = 2 \boldsymbol{A}=2 A=2 , 知 A \boldsymbol{A} A为列满秩矩阵,所以
A L − 1 = ( A T A ) − 1 A T = [ ( 1 2 1 2 1 1 ) ( 1 2 2 1 1 1 ) ] − 1 ( 1 2 1 2 1 1 ) = 1 11 ( − 4 7 1 7 − 4 1 ) . \begin{aligned}A_{L}^{-1}&=(A^\mathrm{T}A)^{-1}A^\mathrm{T}=\left[\begin{pmatrix}1&2&1\\2&1&1\end{pmatrix}\begin{pmatrix}1&2\\2&1\\1&1\end{pmatrix}\right]^{-1}\begin{pmatrix}1&2&1\\2&1&1\end{pmatrix}\\&=\frac{1}{11}\begin{pmatrix}-4&7&1\\7&-4&1 \end{pmatrix}.\end{aligned} AL1=(ATA)1AT= (122111) 121211 1(122111)=111(477411).

矩阵 A A A 的左逆与右逆一般不能同时存在,只有当 m = n m=n m=n 时的可逆方阵,左逆和右逆才能同时存在.
一般 m × n m\times n m×n 矩阵的左逆和右逆也不唯一,只有是满秩方阵的时候才是唯一的.
可以验证,行满秩 m × n m\times n m×n 矩阵 A A A右逆一般表达式
B = V A T ( A V A T ) − 1 , B=VA^{\mathrm{T}}(AVA^{\mathrm{T}})^{-1}, B=VAT(AVAT)1,其中, V V V 是使等式 r a n k   A V A T = r a n k   A = m \mathrm{rank}~AVA^{\mathrm{T}}=\mathrm{rank}~A=m rank AVAT=rank A=m 成立的任意 n n n 阶方阵.
如果 A A A m × n m\times n m×n 列满秩矩阵,则 A A A左逆一般表达式
B = ( A T U A ) − 1 A T U , B=(A^\mathrm{T}UA)^{-1}A^\mathrm{T}U, B=(ATUA)1ATU,其中 U U U 是使等式 r a n k   A T U A = rank ⁡ A = n \mathrm{rank}~\boldsymbol{A}^\mathrm{T}\boldsymbol{U}\boldsymbol{A}=\operatorname{rank}\boldsymbol{A}=n rank ATUA=rankA=n 成立的任意 m m m 阶方阵.

定理 4.2.7 A A A m × n m\times n m×n 矩阵, A A A 的满秩分解 A = B C , A=BC, A=BC,
其中 B {B} B m × r m\times r m×r 矩阵, C C C r × n r\times n r×n 矩阵,且 r a n k   A = r a n k   B = r a n k   C = r ⩽ min ⁡ { m , n } \mathrm{rank}~A=\mathrm{rank}~{B}=\mathrm{rank}~{C}=r\leqslant\min\{m,n\} rank A=rank B=rank C=rmin{m,n}
已知 B B B 的一个左逆为 B L − 1 , C \boldsymbol{B}_L^{-1}, {C} BL1,C 的一个右逆 C R − 1 \boldsymbol{C}_R^{-1} CR1, 则
A − = C R − 1 B L − 1   , A^-=C_R^{-1}B_L^{-1}\:, A=CR1BL1, A − = C T ( C C T ) − 1 ( B T B ) − 1 B T . A^-=C^\mathrm{T}(CC^\mathrm{T})^{-1}(B^\mathrm{T}B)^{-1}B^\mathrm{T}. A=CT(CCT)1(BTB)1BT.

证明 将上式代人 Penrose-Moore 方程,有 A X A = A C R − 1 B L − 1 A = B C C R − 1 B L − 1 B C = B C = A AXA=AC_R^{-1}B_L^{-1}A=BCC_R^{-1}B_L^{-1}BC=BC=A AXA=ACR1BL1A=BCCR1BL1BC=BC=A .

4.3 自反广义逆

定义 4.3.1 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n , 若 X ∈ R n × m X\in\mathbb{R}^{n\times m} XRn×m 且满足方程
A X A = A , X A X = X , \begin{aligned}AXA&=A,\\XAX&=X,\end{aligned} AXAXAX=A,=X, X ∈ A { 1 , 2 } . \boldsymbol{X}\in\boldsymbol{A}\{1,2\}. XA{1,2}.此时称 X X X A A A 的一个 { 1 , 2 } \{1,2\} {1,2} 逆,也称为自反广义逆,记为 X = A ( 1 , 2 ) \boldsymbol X=A^{(1,2)} X=A(1,2).
矩阵 A A A 的所有自反广义逆的集合记为 A { 1 , 2 } \mathbf{A}\{1,2\} A{1,2}.若 X \boldsymbol X X A A A 的自反广义逆,则 A A A 也是 X X X 的自反广义逆,这就是自反的含义.

定理 4.3.2 任何矩阵 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n 都有自反广义逆.

证 如果 A = O A=\boldsymbol O A=O , 则 X = O X=\boldsymbol O X=O , 显然就是 A A A 的自反广义逆.
如果 A ≠ O A\neq\boldsymbol O A=O, rank A = r A=r A=r, 存在可逆矩阵 P P P Q Q Q , 使
P A Q = ( E r    O O     O ) . PAQ=\binom{E_r~~O}{O~~~O}. PAQ=(O   OEr  O).结合减号逆的证明,直接验证可知矩阵 X = Q [ E r W V V W ] P . \boldsymbol{X}=\boldsymbol{Q}\begin{bmatrix}\boldsymbol{E}_r&W\\V&VW\end{bmatrix}\boldsymbol{P}. X=Q[ErVWVW]P.
A A A 的自反广义逆,其中 W ∈ R r × ( m − r ) W\in \mathbf{R} ^{r\times ( m- r)} WRr×(mr) , V ∈ R ( n − r ) × r , V\in \mathbf{R} ^{( n- r) \times r} ,VR(nr)×r 是任意矩阵。
定理7.5说明自反广义逆存在,且不唯一.

例 4.3.3 A = ( 1 0 0 1 1 1 2 1 1 ) \boldsymbol{A}=\begin{pmatrix}1&0&0\\[0.3em]1&1&1\\[0.3em]2&1&1\end{pmatrix} A= 112011011 试求A的自反广义逆.
解 由初等矩阵变换可知 P A Q = [ 1 0 0 − 1 1 0 − 1 − 1 1 ] [ 1 0 0 1 1 1 2 1 1 ] [ 1 0 0 0 1 − 1 0 0 1 ] = [ 1 0 0 0 1 0 0 0 0 ] . \boldsymbol{PAQ}=\begin{bmatrix}1&0&0\\-1&1&0\\-1&-1&1\end{bmatrix}\begin{bmatrix}1&0&0\\1&1&1\\2&1&1\end{bmatrix}\begin{bmatrix}1&0&0\\0&1&-1\\0&0&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}. PAQ= 111011001 112011011 100010011 = 100010000 .
A ( 1 , 2 ) = Q [ 1 0 w 1 0 1 w 2 v 1 v 2 v 1 w 1 + v 2 w 2 ] P \boldsymbol{A}^{(1,2)}=\boldsymbol{Q}\begin{bmatrix}1&0&w_1\\0&1&w_2\\\\v_1&v_2&v_1w_1+v_2w_2\end{bmatrix}\boldsymbol{P} A(1,2)=Q 10v101v2w1w2v1w1+v2w2 P, 其中 w i , v i ( i = 1 , 2 ) w_i,v_i(i=1,2) wi,vi(i=1,2) 可以取任意常数.

定理 4.3.4 对任何 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n ,若 Y , Z ∈ A { 1 } Y,Z\in A\{1\} Y,ZA{1} , 那么 X = Y A Z ∈ A { 1 , 2 } . X=YAZ\in A\{1,2\}. X=YAZA{1,2}.

A X A = ( A Y A ) Z A = A Z A = A , X A X = Y ( A Z A ) Y A Z = Y ( A Y A ) Z = Y A Z = X , \begin{aligned}&AXA=(AYA)ZA=AZA=A,\\&XAX=Y(AZA)YAZ=Y(AYA)Z=YAZ=X,\end{aligned} AXA=(AYA)ZA=AZA=A,XAX=Y(AZA)YAZ=Y(AYA)Z=YAZ=X,

引理 4.3.5 A ∈ R m × n , X ∈ R n × m \boldsymbol A\in\mathbf{R}^{m\times n},\boldsymbol{X}\in\mathbf{R}^{n\times m} ARm×n,XRn×m, 若 R ( X A ) = R ( X )   , R(XA)=R(X)\:, R(XA)=R(X),
\qquad 则存在 Y ∈ R n × m Y\in\mathbf{R}^{n\times m} YRn×m, 使 X A Y = X . XAY=X. XAY=X.

证 令 q 1 , q 2 , . . . , q m q_1,q_2,...,q_m q1,q2,...,qm R m \mathbf{R}^m Rm 的一组基, r i = X q i , i = 1 , 2 , ⋯   , m , r_i=Xq_i,\quad i=1,2,\cdots,m, ri=Xqi,i=1,2,,m, r i ∈ R ( X ) r_i\in R( X) riR(X) ,
因为 R ( X A ) = R ( X ) R(XA)=R(X) R(XA)=R(X), 所以 r i ∈ R ( X A ) r_i\in R(XA) riR(XA),
即存在 p i ∈ R n p_i\in\mathbb{R}^n piRn, 使得 r i = X A p i , i = 1 ,   2 ,   ⋯   ,   m . r_i=XAp_i,\quad i=1,\:2,\:\cdots,\:m. ri=XApi,i=1,2,,m.
P = ( p 1 ,   p 2 ,   ⋯   ,   p m ) ∈ R n × m , Q = ( q 1 ,   q 2 ,   ⋯   ,   q m ) ∈ R m × m , P=(p_1,\:p_2,\:\cdots,\:p_m)\in\mathbf{R}^{n\times m},Q=(q_1,\:q_2,\:\cdots,\:q_m)\in\mathbf{R}^{m\times m}, P=(p1,p2,,pm)Rn×m,Q=(q1,q2,,qm)Rm×m,
显然 Q Q Q 可逆.
X q i = X A p i Xq_i=XAp_i Xqi=XApi X Q = X A P XQ=XAP XQ=XAP , 即
X = X A P Q − 1 . X=XAPQ^{-1}. X=XAPQ1. Y = P Q − 1 Y=PQ^{-1} Y=PQ1 ,于是 X = X A Y . X=XAY. X=XAY.

定理 4.3.6 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n ,rank A = r , X ∈ R n × m \mathbf{A}=r,\boldsymbol{X}\in\mathbf{R}^{n\times m} A=r,XRn×m ,且 X ∈ A { 1 } \boldsymbol{X}\in\boldsymbol{A}\{1\} XA{1}, 则 X ∈ A { 1 , 2 } \boldsymbol{X}\in\boldsymbol{A}\{1,2\} XA{1,2} 的充分必要条件是
rank ⁡ X = rank ⁡ A . \operatorname{rank}X=\operatorname{rank}A. rankX=rankA.

证 必要性.因为 X ∈ A { 1 , 2 } X\in A\{1,2\} XA{1,2},
A X A = A ⇒ rank ⁡ A = rank ⁡ A X A ⩽ rank ⁡ A X ⩽ rank ⁡ X ; AXA=A\Rightarrow\operatorname{rank}A=\operatorname{rank}AXA\leqslant\operatorname{rank}AX\leqslant\operatorname{rank}X; AXA=ArankA=rankAXArankAXrankX;
X A X = X ⇒ rank ⁡ X = rank ⁡ X A X ⩽ rank ⁡ X A ⩽ rank ⁡ A ; XAX=X\Rightarrow\operatorname{rank} X=\operatorname{rank}XAX\leqslant\operatorname{rank}XA\leqslant\operatorname{rank}A; XAX=XrankX=rankXAXrankXArankA;
于是 rank ⁡ X = rank ⁡ A . \operatorname{rank}X=\operatorname{rank}A. rankX=rankA.
  ~  
充分性.已知 rank ⁡ X = rank ⁡ A , \operatorname{rank}X=\operatorname{rank}A, rankX=rankA,
任给 w ∈ R ( X A ) w\in R(XA) wR(XA), 存在 v v v 使得 w = X A v , w=XAv, w=XAv, z = A v , z=Av , z=Av, 于是 w = X z w=Xz w=Xz, 即 w ∈ R ( X ) w\in R(X) wR(X),
因此 R ( X A ) ⊂ R ( X ) . R(XA)\subset R(X). R(XA)R(X).
A − A^- A 的性质(4)知 rank ⁡ A − A = rank ⁡ A . \operatorname{rank}A^{-}A=\operatorname{rank}A. rankAA=rankA. 于是
rank ⁡ X A = rank ⁡ A = rank ⁡ X , \operatorname{rank}XA=\operatorname{rank}A=\operatorname{rank}X, rankXA=rankA=rankX, R ( X A ) R(XA) R(XA) R ( X ) R(X) R(X) 的维数相等,由此推知 R ( X A ) = R ( X ) . R(XA)=R(X). R(XA)=R(X).
由引理 4.3.5 知 ,存在 Y ∈ R n × m Y\in\mathbf{R}^{n\times m} YRn×m ,使 X A Y = X XAY=X XAY=X , 左乘 A A A
A X = A X A Y = ( A X A ) Y = A Y , AX=AXAY=(AXA)Y=AY, AX=AXAY=(AXA)Y=AY,所以
X A X = X A Y = X , X ∈ A { 1 , 2 } . XAX=XAY=X,\quad X\in A\{1,2\}. XAX=XAY=X,XA{1,2}.

4.4 加号逆

定理 4.4.1 A ∈ R m × n A\in\mathbf{R}^{m\times n} ARm×n ,若存在矩阵 X ∈ R n × m X\in\mathbf{R}^{n\times m} XRn×m 满足
                                              A X A = A , ( A X ) H = A X , X A X = X , ( X A ) H = X A   , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\begin{aligned}&AXA=A,&(AX)^{\mathrm{H}}=AX,\\&XAX=X,&(XA)^{\mathrm{H}}=XA\:,\end{aligned}                                              AXA=A,XAX=X,(AX)H=AX,(XA)H=XA,
X ∈ A { 1 , 2 , 3 , 4 } . \boldsymbol{X}\in\boldsymbol{A}\{1,2,3,4\}. XA{1,2,3,4}. 此时,称 X X X A A A 的一个 { 1 , 2 , 3 , 4 } \{1,2,3,4\} {1,2,3,4} 逆,也称为加号逆,记作 A + A^+ A+ A ( 1 , 2 , 3 , 4 ) . A^{(1,2,3,4)}. A(1,2,3,4).

定理 4.4.2 任给矩阵 A ∈ R m × n , A + A\in\mathbf{R}^{m\times n},A^+ ARm×n,A+存在且唯一.

证 设 rank A = r ≠ 0 \boldsymbol{A}=r\neq0 A=r=0 ,取 A \boldsymbol{A} A 的一个满秩分解为 A = B C , A=BC, A=BC,
其中 B ∈ R m × r , C ∈ R r × n B\in\mathbf{R}^m\times r,\mathbf{C}\in\mathbf{R}^{r\times n} BRm×r,CRr×n,rank B = rank ⁡ C = r . \boldsymbol{B}=\operatorname{rank}\boldsymbol{C}=r. B=rankC=r.
X = C   T ( C C T ) − 1 ( B T B ) − 1 B T , X=C^\mathrm{~T}(CC^\mathrm{T})^{-1}(B^\mathrm{T}B)^{-1}B^\mathrm{T}, X=C T(CCT)1(BTB)1BT,

( 1 ) AXA = B C C T ( C C T ) − 1 ( B T B ) − 1 B T B C = B C = A . ( 2 ) XAX = C T ( C C T ) − 1 ( B T B ) − 1 B T B C C T ( C C T ) − 1 ( B T B ) − 1 B T = C T ( C C T ) − 1 ( B T B ) − 1 B T = X . ( 3 ) ( A X ) T = ( B C C T ( C C T ) − 1 ( B T B ) − 1 B T ) T = ( B ( B T B ) − 1 B T ) T = B ( ( B T B ) − 1 ) T B T = B ( B T A ) − 1 B T = A X . ( 4 ) ( X A ) T = ( C T ( C C T ) − 1 ( B T B ) − 1 B T B C ) T = ( C T ( C C T ) − 1 C ) T = C T ( ( C C T ) − 1 ) T C = C T ( C C T ) − 1 C = X A . \begin{aligned} (1)\text{AXA}&=BCC^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}BC\\ &=BC=A.\\ (2)\text{XAX}&=C^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}BCC^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}\\&=C^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}=X.\\ (3)(AX)^{\mathrm{T}}&=(BCC^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}})^{\mathrm{T}}\\&=(B(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}})^{T}=B((B^{\mathrm{T}}B)^{-1})^{\mathrm{T}}B^{\mathrm{T}}\\&=B(B^\mathrm{T}A)^{-1}B^\mathrm{T}=AX.\\ (4)(XA)^{\mathrm{T}}&=(C^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}BC)^{\mathrm{T}}\\&=(C^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}C)^{\mathrm{T}}=C^{\mathrm{T}}((CC^{\mathrm{T}})^{-1})^{\mathrm{T}}C\\&=C^{\mathrm{T}}(CC^{\mathrm{T}})^{-1}C=XA. \end{aligned} (1)AXA(2)XAX(3)(AX)T(4)(XA)T=BCCT(CCT)1(BTB)1BTBC=BC=A.=CT(CCT)1(BTB)1BTBCCT(CCT)1(BTB)1BT=CT(CCT)1(BTB)1BT=X.=(BCCT(CCT)1(BTB)1BT)T=(B(BTB)1BT)T=B((BTB)1)TBT=B(BTA)1BT=AX.=(CT(CCT)1(BTB)1BTBC)T=(CT(CCT)1C)T=CT((CCT)1)TC=CT(CCT)1C=XA.所以 X X X A A A 的一个 A + A^+ A+ 逆。
r a n k   A = 0 \mathrm{rank}~A=0 rank A=0,即 A = O A=O A=O 为零矩阵时,容易验证 X = O X=O X=O A A A 的一个 A + A^+ A+ 逆,故 A + A^+ A+ 存在。
  ~  
下证唯一性. 假设 X 1 X_1 X1 X 2 X_2 X2 都是 A A A A + A^+ A+逆,由定理 4.1.3 和 Penrose-Moore 方程组可知
  ~  
                   X 1 = X 1 X 1 T A T = X 1 X 1 T ( A X 2 A ) T = X 1 X 1 T A T X 2 T A T = X 1 ( A X 1 ) T ( A X 2 ) T = X 1 A X 1 A X 2 = X 1 A X 2 = X 1 A X 2 A X 2 = X 1 A ( X 2 A ) T X 2 = X 1 A A T X 2 T X 2 = A T X 2 T X 2 = ( X 2 A ) T X 2 = X 2 A X 2 = X 2 . ~~~~~~~~~~~~~~~~~~\begin{aligned}X_{1}&=X_1X_1^\mathrm{T}A^\mathrm{T}=X_1X_1^\mathrm{T}(AX_2A)^\mathrm{T}=X_1X_1^\mathrm{T}A^\mathrm{T}X_2^\mathrm{T}A^\mathrm{T}\\&=X_1(AX_1)^\mathrm{T}(AX_2)^\mathrm{T}=X_1AX_1AX_2=X_1AX_2\\&=X_1AX_2AX_2=X_1A(X_2A)^\mathrm{T}X_2=X_1AA^\mathrm{T}X_2^\mathrm{T}X_2\\&=A^\mathrm{T}X_2^\mathrm{T}X_2=(X_2A)^\mathrm{T}X_2=X_2AX_2\\&=X_2.\end{aligned}                   X1=X1X1TAT=X1X1T(AX2A)T=X1X1TATX2TAT=X1(AX1)T(AX2)T=X1AX1AX2=X1AX2=X1AX2AX2=X1A(X2A)TX2=X1AATX2TX2=ATX2TX2=(X2A)TX2=X2AX2=X2.

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值