学习笔记-卷积神经网络(2)

Classic networks:
1.LeNet-5
2.AlexNet
3.VGG-16
ResNet
Inception
———————————————————————————————————————
LeNet-5
仅针对灰度图像(单通道图像)
AlexNet
神经网络结构较为复杂
VGG-16
简化了神经网络结构 16(包含16个卷积层和全连接层) 参数巨多
结构:
input——>conV——>POOL…——>FC.——>Softmax
每次卷积都会翻倍过滤器的数量
主要缺点:训练的特征数量巨大
——————————————————————————————————————
ResNets
残差块、跳远连接
直接将信息传达到神经网络的更深层,不用根据路径传递。
减少训练时带来的误差。
训练深度网络方面很有效
Relu激活函数的激活值必须是0或正数
———————————————————————————————————————
inception networks
inception网络代替人工来确定卷积层中的过滤器类型、是否需要创建卷积层和池化层
让网络学习自己需要的参数、采用哪些过滤器的组合。
合理构建瓶颈层(bottleneck layer),可以显著缩小表示层规模并且不会降低网络性能,大量节省了计算成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值