【初学者必看】图像处理入门,Blob分析技术

新单词

OCR(Optical Character Recognition,光学字符识别)
Skew 斜率
Spacing 间距
ROI(region of interest),感兴趣区域
查找表(Look-Up-Table)

Blob

翻译成中文,是“一滴”,“一抹”,“一团”,“弄脏”,“弄错”的意思。在计算机视觉中的Blob是指图像中的具有相似颜色、纹理等特征所组成的一块连通区域。显然,Blob分析其实就是将图像进行二值化,分割得到前景和背景,然后进行连通区域检测,从而得到Blob快的过程。简单来说,blob分析就是在一块“光滑”区域内,将出现“灰度突变”的小区域寻找出来。举例来说,假如现在有一块刚生产出来的玻璃,表面非常光滑,平整。如果这块玻璃上面没有瑕疵,那么,我们是检测不到“灰度突变”的;相反,如果在玻璃生产线上,由于种种原因,造成了玻璃上面有一个凸起的小泡、有一块黑斑、有一点裂缝。。。那么,我们就能在这块玻璃上面检测到纹理,颜色发生突变的部分,而这些部分,就是生产过程中造成的瑕疵,而这个过程,就是blob分析。显然,纺织品的瑕疵检测,玻璃的瑕疵检测,机械零件表面缺陷检测,可乐瓶缺陷检测,药品胶囊缺陷检测等很多场合都会用到blob分析。

Introduction 介绍

 前景/背景分割完成后,在大多数应用程序中,下一个任务是分析单个前景对象,以获得对所观察场景的某种高级知识。
 这种知识可能涉及检测什么类型的对象包含在场景,测量他们的位置和姿态,评估对象是否显示或不制造缺陷或错误…
 因此,单个对象(通常称为blob(二进制大型对象)或区域,首先需要在整个前台区域内进行隔离。正如已经指出的,这个步骤被称为连接组件标记。
 然后,可以对单个对象进行处理,以提取与所需的高级知识相关的特定特性。例如,可以通过计算几个特征来确定物体的形状,从而检测在观察到的场景中是否存在一个或多个由机器人拾取的特定类型的物体。要让机器人选择被探测到的物体,通常需要计算与它们的位置和方向相关的其他特征。
 从Blob中提取特征的过程通常称为Blob分析。特征可以来自属于blob(区域特征)的所有像素,也可以来自边界像素(边界或轮廓特征)。文献中已经提出了大量不同的特性:我们将在这里介绍一些最广泛使用的特性。
 与形状相关的特性需要显示对象图像在指定设置中可能经历的转换的不变性。大多数情况下,形状特征需要满足相似变换(平移、旋转和缩放变化)的不变性,也就是说,如果对象出现在不同的位置或旋转或在图像中显示不同的大小,则不需要改变。
 •基于blob特性的对象检测可以根据启发式规则或部署模式识别技术来完成,例如特殊的机器学习技术。利用后一种方法,从训练样本中学习了将特征向量映射到一组对象类型的分类函数。

举个栗子

•从Blob中提取特征的过程通常称为Blob分析。特征可以来自属于blob(区域特征)的所有像素,也可以来自边界像素(边界或轮廓特征)。文献中已经提出了大量不同的特性:我们将在这里介绍一些最广泛使用的特性。
•与形状相关的特征第一个扫描前景像素基于那些已经访问过的邻居,这取决于选择的距离,如D4,和扫描顺序,如左右,自上而下。
•在第一次扫描时,不同的blob显然已经被赋予了不同的标签,不过,根据形状的不同,这可能也适用于单个blob的连接部分。
•因此,第二次扫描允许将唯一的最终标签分配给属于同一个blob的部分,这些部分在第一次扫描时被分配了不同的临时标签。
•有意地,在两次扫描之间需要找到等效的临时标签,以便为临时标签之间的每个等价类分配唯一的最终标签。需要显示对象图像在指定设置中可能经历的转换的不变性。大多数情况下,形状特征需要满足相似变换(平移、旋转和缩放变化)的不变性,也就是说,如果对象出现在不同的位置或旋转或在图像中显示不同的大小,则不需要改变。
•基于blob特性的对象检测可以根据启发式规则或部署模式识别技术来完成,例如特殊的机器学习技术。利用后一种方法,从训练样本中学习了将特征向量映射到一组对象类型的分类函数。

文本分析技术Example: Text Analysis

质量控制和OCR(Optical Character Recognition,光学字符识别)
Grab image ROI Binarization Labeling Blob Analysis

距离和连通性Distances and Connectivity

为了讨论标记二值图像连通分量的算法,首先我们需要引入连通性的概念,它又与离散平面上的距离E2有关
距离的定义:非负性,零和性,交换性,三角形定理
City-block distance
4-neighbourhood of p n4§
二进制图像的连通分量 Connected Components of a Binary Image

Connected Components Labeling 联通区域标记

属于不同连接组件的像素被赋予不同标签,而背景像素不受影响的计算(例如
他们可以保留以前的标签,或者,等价地,一个新的标签)
经典2扫描算法确定联通分量The classical 2-scans algorithm
通过第一次扫描前景像素采取临时标签,这取决于选择的距离,以及扫描顺序,如左,右,自上而下。在第一次扫描时,不同的团块当然被赋予了不同的标签,根据形状的不同,这可能同一联通区域赋予了不同的值。第二次扫描唯一的最终标签分配给连通分量。在两次扫描之间需要找到等价的临时标签,以便为临时标签之间的每个等价类分配一个惟一的最终标签。

Flood-fill approach 洪水填充算法

这种方法实现起来非常简单,但由于图像被扫描了几次而不是两次,效率明显较低。从“种子”像素开始,新标签将在连接的组件中传播。传播通常是通过迭代过程进行的,其中图像是交替处理的自顶向下的左右和自底向上的左边/右边扫描。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于深度学习的钢板表面缺陷检测是一种利用机器学习算法和深度学习技术对钢板表面缺陷进行自动检测的技术。这种方法可以大大提高检测效率和精度,减少人工检测的成本和误差。 在实际应用中,通常采用卷积神经网络(CNN)作为核心模型,它可以自动提取图像中的特征,并根据预设的缺陷类别进行分类和识别。具体流程如下: 1. 收集钢板表面缺陷图像数据集:首先需要收集大量不同类型和不同状态的钢板表面缺陷图像,包括缺陷的类型、大小、位置等信息。 2. 构建深度学习模型:使用CNN等深度学习模型对收集到的图像数据进行训练,使其能够自动识别和分类缺陷。 3. 模型训练和优化:在训练过程中,不断调整模型参数和优化算法,以提高模型的准确性和稳定性。 4. 缺陷检测:将待检测的钢板表面图像输入到训练好的模型中,模型会自动识别和分类其中的缺陷,并输出检测结果。 基于深度学习的钢板表面缺陷检测具有以下优点: 1. 高精度:深度学习模型可以自动提取图像中的特征,大大提高了缺陷检测的精度和准确性。 2. 自动化:整个检测过程可以自动化进行,无需人工干预,大大提高了工作效率。 3. 实时性:深度学习模型可以在短时间内处理大量图像数据,实现实时检测。 4. 可扩展性:基于深度学习的钢板表面缺陷检测技术可以广泛应用于其他金属材料表面缺陷检测领域,具有广阔的应用前景。 需要注意的是,在实际应用中,还需要考虑一些因素,如图像质量、光照条件、钢板表面状态等因素对检测结果的影响,以及如何将检测结果与实际生产过程相结合等问题。因此,在实际应用中需要综合考虑各种因素,不断完善和优化基于深度学习的钢板表面缺陷检测技术

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

和你在一起^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值