匈牙利匹配

核心概念

  • 交替路:从一个未匹配的点出发,依次经过非匹配边、匹配边、非匹配边······该路径为交替路
  • 增广路:从一个未匹配的点出发,走交替路,如果再次到达一个未匹配的点,该路径为交替路
  • 增广路特点:未匹配的边,比匹配的边,数量多1。因此交换匹配和未匹配的边,就可以使得成功匹配点多1
  • 边:点和点之间可以存在匹配关系,即存在“边”,若不存在匹配关系,则不存在“边”

匈牙利匹配核心原理:不停的从一个未匹配的点出发,找到增广路经,交换匹配关系,增加匹配点数量

实例

存在两个集合M,N
1、 集合M中m1点未匹配,找到N中可以匹配的点n2,n2未与其他点匹配,m1,n2建立匹配关系,匹配数量1
2、集合M中m2点未匹配,找到N中可以匹配的点n2,n2已经与m1匹配,找到N中可以和m1匹配的其他点n3,n3未与其他点匹配,则m1,n3建立匹配关系,m2,n2建立匹配关系,匹配数量2
3、集合M中m3点未匹配,找到N中可以匹配的点n3,n3已经与m1匹配,找到N中可以和m1匹配的其他点n2,n2已经与m2建立匹配关系,找到n中可以和m2匹配的其他点。若找不到,则匹配失败,m3无法匹配。若找到n4点,则m2,n4建立匹配,n2,m1建立匹配,m3,n3建立匹配,匹配数量3

同一集合,有序链接的匈牙利匹配

#include <iostream>
#include <vector>

// 同一个集合中的点,存在有序链接,找到最大的链接点数
std::vector<std::vector<int>> H = {{0,0,1,1,1,0},{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,1,1},{0,0,0,0,0,0},{0,0,0,0,0,0}}; // 邻接矩阵
int size = 6;
int is_visit[6] = {0}; // 0->not visit 1->visit
int prev[6] = {0}; // 记录每个点的前向链接对应index,无链接-> -1
int post[6] = {0}; // 记录每个点的后向链接对应index,无链接-> -1

// 寻找前向链接点        
bool f_prev(int index);

//寻找后向链接点
bool f_post(int index);


bool f_post(int index){
    for (int i = 0; i < size; i++){
        if (i == index)
            continue;
        // if visit i or the index could not be linked to i, continue
        if (is_visit[i] || !H[index][i])
            continue;
        is_visit[i] = 1;
        if (prev[i] == -1 || f_prev(i)){
            prev[i] = index;
            post[index] = i;
            return true;
        }
    }
    return false;
}

bool f_prev(int index){
    for (int i = 0; i < size; i++){
        if (i == index)
            continue;
        if (is_visit[i] || (!H[i][index])) // 判断是否访问,或是否存在有序链接关系
            continue;
        is_visit[i] = 1; // 注意,即使不能链接也要在访问列表中,置位
        if (post[i] == -1 || f_post(i)){
            post[i] = index;
            prev[index] = i;
            return true;
        }
    }
    return false;
}



int main(){
	memset(prev, -1, sizeof(prev));
	memset(post, -1, sizeof(post));
	for (int i = 0; i < size; i++){
		if (post[i] == -1){
			memset(is_visit, 0, sizeof(is_visit));
			f_post(i);
		}
	}

	for (int i = 0; i < size; i++){
	    std::cout << post[i] << std::endl;
	}
    
}

匈牙利算法(匈牙利匹配算法)是一种解决二分图最大匹配问题的算法。它的基本思想是从左侧的未匹配顶点开始,依次尝试与其右侧的顶点匹配,如果匹配成功,则继续处理下一个未匹配顶点,否则尝试为当前顶点寻找另一个可行的匹配。 以下是一份基于 MATLAB 的匈牙利算法实现代码,用于求解给定二分图的最大匹配: ```matlab function [match, maxMatch] = hungarianAlgorithm(BipartiteGraph) % BipartiteGraph: 二分图的邻接矩阵表示 % match: 匹配结果(左侧顶点对应的右侧顶点编号,未匹配则为 0) % maxMatch: 最大匹配数 n = size(BipartiteGraph, 1); % 左侧顶点数 m = size(BipartiteGraph, 2); % 右侧顶点数 match = zeros(1, n); % 匹配结果 maxMatch = 0; % 最大匹配数 for i = 1:n % 初始化标记数组 S = false(1, n); T = false(1, m); P = zeros(1, m); % 右侧顶点的前驱顶点编号 AugPath = zeros(1, n); % 增广路径 % 寻找未匹配的左侧顶点 if match(i) == 0 % 在未匹配的左侧顶点中查找增广路径 if dfs(i) % 更新匹配结果 maxMatch = maxMatch + 1; j = i; while j ~= 0 match(j) = AugPath(j); j = P(AugPath(j)); end end end end % 深度优先搜索查找增广路径 function isPathFound = dfs(u) S(u) = true; for v = 1:m if BipartiteGraph(u, v) && ~T(v) T(v) = true; if P(v) == 0 || dfs(P(v)) P(v) = u; AugPath(u) = v; isPathFound = true; return end end end isPathFound = false; end end ``` 该算法的时间复杂度为 O(n^3),其中 n 为图中顶点的数量。在实际应用中,可以通过一些优化技巧(如启发式算法、Kuhn-Munkres 算法)来提高算法的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值