聚类和分类的区别
聚类与分类的最大不同在于,分类的目标事先已知,而聚类则不一样。因为其产生 的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification)
K-均值聚类算法
K-均值是发现给定数据集的k个簇的算法。簇个数k是用户给定的,每一个簇通过其质心 (centroid),即簇中所有点的中心来描述。 K-均值算法的工作流程是这样的。首先,随机确定k个初始点作为质心。然后将数据集中的 每个点分配到一个簇中,具体来讲,为每个点找距其最近的质心,并将其分配给该质心所对应的 簇。这一步完成之后,每个簇的质心更新为该簇所有点的平均值。
算法伪代码
创建k个点作为起始质心(经常是随机选择)
当任意一个点的簇分配结果发生改变时
对数据集中的每个数据点
对每个质心
计算质心与数据点之间的距离
将数据点分配到距其最近的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心
一般流程
(1) 收集数据:使用任意方法。
(2) 准备数据:需要数值型数据来计算距离,也可以将标称型数据映射为二值型数据再用 于距离计算。 (3) 分析数据:使用任意方法。
(4) 训练算法:不适用于无监督学习,即无监督学习没有训练过程。
(5) 测试算法:应用聚类算法、观察结果。可以使用量化的误差指标如误差平方和(后面 会介绍)来评价算法的结果。
(6) 使用算法:可以用于所希望的任何应用。通常情况下,簇质心可以代表整个簇的数据 来做出决策。
Python代码
加载文本函数
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = list(map(float,curLine)) # 转换为float型
dataMat.append(fltLine) # 添加到数据集
return dataMat
计算两个向量欧几里得距离
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
在整个数据集范围之内,构建k个随机质心集合
def randCent(dataSet, k):
n = shape(dataSet)[1] # 特征个数
centroids = mat(zeros((k,n))) # k*n质心矩阵
for j in range(n): # 创建随机簇质心,并且在每一维的边界内
minJ = min(dataSet[:,j]) # 找每一维的最小值
rangeJ = float(max(dataSet[:,j]) - minJ) # 最大值-最小值=范围
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 随机生成一列在范围内的随机数 random.rand 是numpy的函数随机生成k行1列的array
return centroids
k-mean聚类算法
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0] # 样本个数
clusterAssment = mat(zeros((m, 2))) #创建一个与 dataSet 行数一样,但是有两列的矩阵,用来保存簇分配结果
centroids = createCent(dataSet, k) #k个质心
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): # 循环每一个数据点并分配到最近的质心中去
minDist = inf; minIndex = -1
for j in range(k): #找到距离最小的值
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j #更新下角标和距离
if clusterAssment[i, 0] != minIndex:
clusterChanged = True # 簇改变
clusterAssment[i, :] = minIndex,minDist**2
print centroids
for cent in range(k): #更新族值,取其平均值
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A==cent)[0]]
centroids[cent,:] = mean(ptsInClust, axis=0)
return centroids, clusterAssment
结果,第一个为list是初始化的执行,之后是不断迭代求均值的质心,最后一个是迭代完成,数据点的簇分配结果不再改变位置,那么就得到了结果
[[-2.26011863 4.87140456]
[-2.77326462 4.92766064]
[ 1.17591447 1.49748964]
[-5.30777337 -2.54421764]]
[[-1.94060073 3.03355673]
[-3.48664243 2.77252571]
[ 2.50265374 0.25033376]
[-3.38237045 -2.9473363 ]]
[[-1.1749848 3.1969556 ]
[-3.3856885 2.52409988]
[ 2.9336716 0.07055631]
[-3.01169468 -3.01238673]]
[[-0.42605093 3.37647757]
[-3.17006745 2.60393509]
[ 2.99405094 -0.1605263 ]
[-3.01169468 -3.01238673]]
[[ 1.18727212 3.58239347]
[-2.84017553 2.6309902 ]
[ 3.09181665 -1.14418992]
[-3.01169468 -3.01238673]]
[[ 2.3772111 3.2195035 ]
[-2.54951105 2.75812458]
[ 2.8692781 -2.54779119]
[-3.38237045 -2.9473363 ]]
[[ 2.6265299 3.10868015]
[-2.46154315 2.78737555]
[ 2.80293085 -2.7315146 ]
[-3.38237045 -2.9473363 ]]
centroids= [[ 2.6265299 3.10868015]
[-2.46154315 2.78737555]
[ 2.80293085 -2.7315146 ]
[-3.38237045 -2.9473363 ]]
使用后处理来提高聚类性能
一种用于度量聚类效果的指标是SSE(Sum of Squared Error,误差平方和),对应上面程序中clusterAssment矩阵的第一列之和。SSE值越小表示数据点越接近于它们的质心,聚类效果也 越好。因为对误差取了平方,因此更加重视那些远离中心的点。一种肯定可以降低SSE值的方法是 增加簇的个数,但这违背了聚类的目标。聚类的目标是在保持簇数目不变的情况下提高簇的质量。
你可以对生成的簇进行后处理,一种方法是将具有最大 SSE值的簇划分成两个簇。具体实现时可以将最大簇包含的点过滤出来并在这些点上运行K-均值。
为了保持簇总数不变,可以将某两个簇进行合并。有两种可以量化的办法:合并最近的质心,或者合并两个使得SSE增幅最小的质心。第一种 思路通过计算所有质心之间的距离,然后合并距离最近的两个点来实现。第二种方法需要合并两 个簇然后计算总SSE值。
二分K-均值算法
该算法主要是为了克服k-均值算法收敛于局部最小值的问题。
伪代码
将所有点看成一个簇
当簇数目小于k时
对于每一个簇
计算总误差
在给定的簇上面进行K-均值聚类(k=2)
计算将该簇一分为二之后的总误差
选择使得误差最小的那个簇进行划分操作
python实现
def biKMeans(dataMat, k, distMeas=distEclud):
m = shape(dataMat)[0]
clusterAssment = mat(zeros((m, 2)))
centroid0 = mean(dataMat, axis=0).tolist()[0]
centList = [centroid0]
for j in range(m):
clusterAssment[j, 1] = distMeas(mat(centroid0), dataMat[j, :])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataMat[nonzero(
clusterAssment[:, 0].A == i)[0], :]
centroidMat, splitClustAss = kMeans(
ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:, 1])
sseNotSplit = sum(
clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0],
1])
print("sseSplit, and notSplit: ", sseSplit, sseNotSplit)
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(
centList)
bestClustAss[nonzero(bestClustAss[:, 0].A == 0)[0],
0] = bestCentToSplit
print('the bestCentToSplit is: ', bestCentToSplit)
print('the len of bestClustAss is: ', len(bestClustAss))
centList[bestCentToSplit] = bestNewCents[0, :].tolist()[
0]
centList.append(
bestNewCents[1, :].tolist()[0])
clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[
0], :] = bestClustAss
return mat(centList), clusterAssment
小结
在本章中,学习到了聚类算法k均值聚类算法,以及基于k均值聚类算法的优化后二分-k均值算法,可以有效避免k均值算法中可能陷入局部最优值的问题。同时本章也学习到了很多numpy的新用法。继续努力,下一章在数据集中查找关联规则的Apriori算法。
参考文献
机器学习实战 Machine learning in action 美Peter Harrington 著 人民邮电出版社
APACHECN学习笔记https://github.com/apachecn/AiLearning/blob/master/docs/ml/10.k-means%E8%81%9A%E7%B1%BB.md