点乘 线性代数_线性代数的本质(7)--点积

本文详细介绍了线性代数中的点积概念,将点积视为线性变换,特别是投影变换的一种表现。内容涵盖点积的计算、顺序无关性、与矩阵向量乘法的关系,以及点积值的正负与向量方向的关系。通过对二维空间向一维空间的线性变换,阐述了点积在几何和代数层面的意义。
摘要由CSDN通过智能技术生成

在向量、线性变换的基础认识上,我们引出点积,这一点我们课本的安排:向量之后就是点积的顺序完全不一致。这样的安排,便于用线性变换的观点来解释点积。点积的定义是对于相同的维数/长度的向量,将向量相同位置的元素进行相乘之后相加。

7.0 总结

1) 向量

equation?tex=%5CLongleftrightarrow 线性变换的一种载体;

2) 点积

equation?tex=%5CLongleftrightarrow 线性变换

equation?tex=%5CLongleftrightarrow 投影变换:多维空间投影到一维空间;

3) 点积

equation?tex=%5CLongleftrightarrow 矩阵向量乘法;为了方便理解,将总结前后copy了一份,与7.7章节的内容保持一致。

7.1 点积的基本知识

点积的计算是通过投影的方式进行的。

A)一个向量的投影与另外一个向量同向

由此可以看到,点积运算与计算顺序没有关系。

B)一个向量的投影与另外一个向量反向

7.2 点积的计算与顺序无关

由上面结果可知,点积的计算与计算顺序无关,这就需要用对偶性来进行解释。

1)当两个向量等长时,具有对称性,可以看出点积的计算与哪个向量向另外一个向量投影没有必然关系。

2)当两个向量并非等长时,对称性破坏,我们采用伸缩的观点来表达,同样可以看出点积的计算与哪个向量向另外一个向零投影没有必然关系。不具有对称性拉伸

equation?tex=%5Cvec%7Bv%7D 并不改变

equation?tex=%5Cvec%7Bw%7D

equation?tex=%5Cvec%7Bv%7D上的投影;那么将

equation?tex=%5Cvec%7Bw%7D 投影到

equation?tex=2%5Cvec%7Bv%7D,

equation?tex=%282%5Cvec%7Bv%7D%29%C2%B7%5Cvec%7Bw%7D%3D2%28%5Cvec%7Bv%7D%C2%B7%5Cvec%7Bw%7D%29equation?tex=2%5Cvec%7Bv%7D 投影到

equation?tex=%5Cvec%7Bw%7D 上,结果依然成立:

equation?tex=%282%5Cvec%7Bv%7D%29%C2%B7%5Cvec%7Bw%7D%3D2%28%5Cvec%7Bv%7D%C2%B7%5Cvec%7Bw%7D%29

7.3 点积与线性变换

经过某种线性变换,可将多维空间映射到一维空间。这样就与点积建立了联系。二维空间映射为一维

首先来看与点积相关的线性变换,我们将追踪二维空间的基向量映射到一维,记录其位置的变化,

接下来我们跟踪向量

equation?tex=%5Cbegin%7Bbmatrix%7D+4%5C%5C3+%5Cend%7Bbmatrix%7D 经过变换

equation?tex=%5Cbegin%7Bbmatrix%7D+1+%26-2+%5Cend%7Bbmatrix%7D 在一维空间中的结果呈现:

7.4 向量与变换之间的关系

向量与变换之间是一种:直立与倒放的关系(转置)

这种直立与倒放的关系在几何上有着什么意义?

任何时候看到一个 2维映射为1维的向量,无论这个线性变换如何定义,在二维空间一定有一个向量与之相对应,这个就与“对偶性”相关

7.5 点积与投影

将二维空间映射到一维空间,对应坐标上的单位向量记作

equation?tex=%5Cvec%7Bu%7D,取二维空间中的点向该坐标轴投影,这样的变换属于线性变换。

根据上述投影,定义投影矩阵

equation?tex=%5Cbegin%7Bbmatrix%7D+%3F%26%3F+%5Cend%7Bbmatrix%7D 为二维向量到数的线性变换,列向量依然表示基坐标经过变换后所在的位置,利用”对称性:

1)

equation?tex=%5Cvec%7Bi%7D 经过变换后的位置为

equation?tex=%5Cvec%7Bu_x%7D ,即

equation?tex=%5Cvec%7Bu%7D

equation?tex=%5Cvec%7Bi%7D 方向的投影。

2)

equation?tex=%5Cvec%7Bj%7D 经过变换后的位置为

equation?tex=%5Cvec%7Bu_y%7D,即

equation?tex=%5Cvec%7Bu%7D

equation?tex=%5Cvec%7Bj%7D方向的投影。

任意向量经过投影变换后的结果

特别的,矩阵向量乘法与点积两者等价:

点积运算可以转化为矩阵乘法,利用变换的思路进行计算

equation?tex=%5Cbegin%7Bbmatrix%7D+u_x+%5C%5C+u_y%5Cend%7Bbmatrix%7D%C2%B7%5Cbegin%7Bbmatrix%7D+x%5C%5Cy+%5Cend%7Bbmatrix%7D%3D%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D+u_x+%26+u_y%5Cend%7Bbmatrix%7D%7D_%7B%E5%8F%98%E6%8D%A2%7D%5Cbegin%7Bbmatrix%7D+x%5C%5Cy+%5Cend%7Bbmatrix%7D

对于非单位向量的变换,实际上就是“投影缩放”的结果。

7.6 点积值的正负

equation?tex=%5Cvec%7Bw%7D%C2%B7%5Cvec%7Bv%7D 的正负取决于一个向量投影另外一个向量之后与被投影向量的方向关系,相同,值为正;

相反,值为负;

垂直,值为0.

7.7 总结

1) 向量

equation?tex=%5CLongleftrightarrow 线性变换的一种载体;

2) 点积

equation?tex=%5CLongleftrightarrow 线性变换

equation?tex=%5CLongleftrightarrow 投影变换:多维空间投影到一维空间;

3) 点积

equation?tex=%5CLongleftrightarrow 矩阵向量乘法;为了方便理解,将总结前后copy了一份,与7.0章节的内容保持一致。

题图来源:https://www.ics.uci.edu/~xhx/img/courses/linearalgebra.png

内容整理自:https://www.bilibili.com/video/av6299284/?spm_id_from=333.788.videocard.0​www.bilibili.com

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值