论文学习——基于混合GA优化LSTM的中小流域流量预测研究

该研究提出了一种基于SP_GA优化的LSTM模型,用于流域径流的流量预测。相较于传统的SVM和BP模型,LSTM在处理序列数据时能更好地捕捉季节性和周期性。通过SP_GA算法,解决了LSTM参数优化的难题,提高了预测精度。实验结果表明,SP_GA_LSTM模型在预测误差和确定性系数上表现最优,尤其在峰值预测上与真实值贴合紧密。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:《计算机仿真》;主办单位:中国航天科工集团公司第十七研究所;中文核心;月刊;
在这里插入图片描述

1 摘要

  1. 提出方法)(模型):SP_GA算法优化LSTM模型参数SP_GA_LSTM
  2. LSTM 模型参数难以确定,采用SP_GA来进行参数寻优
  3. SP_GA算法,在遗传算法中引入粒子群算法公式作为变异算子,并且在种群进化后期,进行模拟退火操作,一次提高收敛速度和全局搜索能力。【这一段话是非常费解的…】

2 结语(conclusion)

  1. 创新点(作者提出的东西):一种改进的混合遗传算法SP_GA
  2. 创新出来的东西干什么用:可以用来优化SVM 、LSTM 等深度学习模型。
    如下图,就是实验章节中的实验对比图。
    在这里插入图片描述

3 引言

  1. 对流域径流变化趋势的模拟和预测是一个重要课题

  2. 与大江大河相比,中小河流具有分布广、降水及下垫面空间异致性强、产汇流时间短、突发性强等特点。

  3. 与支持向量机SVM、BP神经网络、极限学习机ELM等模型相比,带有记忆功能的LSTM 既可对连续的径流数据进行处理,又能考虑到常时间 径流序列 的季节性和周期性,因此能更合理处理序列信息,实现序列预测。

  4. 为了更好地确定LSTM 的参数,就提出了一种混合遗传算法(SP_GA

漳州龙山站的时径流预报

4 基于LSTM的流量预测模型

4.1 LSTM神经网络浅介绍

在这里插入图片描述
在这里插入图片描述

4.2 数据选择与处理

  • 龙山流域作为研究对象,上游设有4个雨量站提供降雨信息,分别是月明、和溪、后眷、龙山。

  • 实验 选取2010 年1 月到2014 年7 月的龙山站小时流量数据和龙山流域内4 个雨量站的时雨量数据共39998 条数据作为实验数据。取前28000 条数据作为训练样本数据,后11998 条作为测试样本数据。

  • 预报因子的选择:运用相关系数分析法之后,确定将前5小时的龙山水文站 前期的流量值, 以及龙山流域内 雨量站前期降雨量值 选择为预报因子。

5 SVM + BP + LSTM 三种单预测模型建模

相关参数设置: BP与LSTM的结构设置为 25 - 50 -1, lr= 0.001, epochs = 100
SVM 选择径向基(RBF)核函数,惩罚因子C=100, 核函数参数 σ = 5 \sigma=5 σ=5

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 从图3 和表1 可以看出,SVM 的预测误差在三者中最大,预测曲线具有明显波动,且峰值预测效果最差;BP 的预测精度较SVM 有所提高,预测曲线与真实值贴合程度也更好;
  • LSTM 的均方根误差和确定性系数为7. 95 和0. 909,在三个模型中最优,并且整体预测曲线和峰值预测最贴合真实值,说明LSTM 模型更具优势。
  • 所以说,作者就使用了LSTM来进行参数优化,进行下面一系列的事情。

6 LSTM 模型参数优化及其预测模型

下面的内容摘自文章内容:

LSTM 模型的非线性建模性能与3 个主要参数密切相关 : 隐含层节点数hidden_size、学习率lr、训练次数epoch。 【这一点还是需要研究的~~不能相信一家之言】

本文将通过混合遗传算法来确定这三个参数。

6.1 遗传算法 GA

介绍:遗传算法的基本思想是基于达尔文进化论和孟德尔的遗传变异理论。其主要步骤包括编码、种群初始化、选择、交叉、变异等操作。通过这些步骤使得种群内个体适应度越来越高,最终收敛到一群最适应环境的个体,从而求得问题的最优解。

6.2 混合遗传算法

作为一种典型的群体智能算法,遗传算法在搜索全局最优解方面具有独特优势,但是在局部搜索能力方面明显不足。

  • 可以通用在遗传算法过程中,融合其他优化方法(爬山法、粒子群算法、蚁群算法、模拟退火算法),从而构成 混合遗传算法

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值