文章目录
写在前面:《计算机仿真》;主办单位:中国航天科工集团公司第十七研究所;中文核心;月刊;
1 摘要
- 提出方法)(模型):
SP_GA算法优化LSTM模型参数
即SP_GA_LSTM
- LSTM 模型参数难以确定,采用
SP_GA
来进行参数寻优 SP_GA
算法,在遗传算法中引入粒子群算法公式作为变异算子,并且在种群进化后期,进行模拟退火操作,一次提高收敛速度和全局搜索能力。【这一段话是非常费解的…】
2 结语(conclusion)
- 创新点(作者提出的东西):一种改进的混合遗传算法
SP_GA
。 - 创新出来的东西干什么用:可以用来优化SVM 、LSTM 等深度学习模型。
如下图,就是实验章节中的实验对比图。
3 引言
-
对流域径流变化趋势的模拟和预测是一个重要课题
-
与大江大河相比,中小河流具有分布广、降水及下垫面空间异致性强、产汇流时间短、突发性强等特点。
-
与支持向量机SVM、BP神经网络、极限学习机ELM等模型相比,带有记忆功能的LSTM 既可对连续的径流数据进行处理,又能考虑到常时间 径流序列 的季节性和周期性,因此能更合理处理序列信息,实现序列预测。
-
为了更好地确定LSTM 的参数,就提出了一种混合遗传算法(
SP_GA
)
漳州龙山站的时径流预报
4 基于LSTM的流量预测模型
4.1 LSTM神经网络浅介绍
4.2 数据选择与处理
-
龙山流域作为研究对象,上游设有4个雨量站提供降雨信息,分别是月明、和溪、后眷、龙山。
-
实验 选取2010 年1 月到2014 年7 月的龙山站小时流量数据和龙山流域内4 个雨量站的时雨量数据共39998 条数据作为实验数据。取前28000 条数据作为训练样本数据,后11998 条作为测试样本数据。
-
预报因子的选择:运用相关系数分析法之后,确定将前5小时的龙山水文站 前期的流量值, 以及龙山流域内 雨量站前期降雨量值 选择为预报因子。
5 SVM + BP + LSTM 三种单预测模型建模
相关参数设置: BP与LSTM的结构设置为 25 - 50 -1, lr= 0.001, epochs = 100
SVM 选择径向基(RBF)核函数,惩罚因子C=100, 核函数参数
σ
=
5
\sigma=5
σ=5
- 从图3 和表1 可以看出,SVM 的预测误差在三者中最大,预测曲线具有明显波动,且峰值预测效果最差;BP 的预测精度较SVM 有所提高,预测曲线与真实值贴合程度也更好;
- LSTM 的均方根误差和确定性系数为7. 95 和0. 909,在三个模型中最优,并且整体预测曲线和峰值预测最贴合真实值,说明LSTM 模型更具优势。
- 所以说,作者就使用了LSTM来进行参数优化,进行下面一系列的事情。
6 LSTM 模型参数优化及其预测模型
下面的内容摘自文章内容:
LSTM 模型的非线性建模性能与3 个主要参数密切相关 : 隐含层节点数hidden_size、学习率lr、训练次数epoch。 【这一点还是需要研究的~~不能相信一家之言】
本文将通过混合遗传算法来确定这三个参数。
6.1 遗传算法 GA
介绍:遗传算法的基本思想是基于达尔文进化论和孟德尔的遗传变异理论。其主要步骤包括编码、种群初始化、选择、交叉、变异等操作。通过这些步骤使得种群内个体适应度越来越高,最终收敛到一群最适应环境的个体,从而求得问题的最优解。
6.2 混合遗传算法
作为一种典型的群体智能算法,遗传算法在搜索全局最优解方面具有独特优势,但是在局部搜索能力方面明显不足。
- 可以通用在遗传算法过程中,融合其他优化方法(爬山法、粒子群算法、蚁群算法、模拟退火算法),从而构成 混合遗传算法