【机器学习】预测送达时间的模型工程化思路

笔记

今天在美团技术博客上学习了一下送达时间的预测模型工程化,记录一下。
ETA(Estimated Time of Arrival,“预计送达时间”),即用户下单后,配送人员在多长时间内将外卖送达到用户手中。送达时间预测的结果,将会以”预计送达时间”的形式,展现在用户的客户端页面上,是配送系统中非常重要的参数,直接影响了用户的下单意愿、运力调度、骑手考核,进而影响配送系统整体成本和用户体验。

ETA作为系统的调节中枢,需要平衡用户-骑手-商家-配送效率。从用户的诉求出发,尽可能快和准时,从骑手的角度出发,太短会给骑手极大压力。从调度角度出发,太长或太短都会影响配送效率。而从商家角度出发,都希望订单被尽可能派发出去,因为这关系到商家的收入。

对于ETA建模,不光是简单一个时间的预估,更需要的是全链路的时间预估,同时更需要兼顾”单量-运力-用户转化率”转化率之间的平衡。配送ETA的演变包括了数据、特征层面的持续改进,也包括了模型层面一路从LR-XGB-FM-DeepFM-自定义结构的演变。

业务流程迭代中的模型改进

与大部分CTR模型的迭代路径相似,配送ETA模型的业务迭代经历了LR->树模型->Embedding->DeepFM->针对性结构修改的路径。特征层面也进行不断迭代和丰富。

  • 模型维度从最初考虑特征线性组合,到树模型做稠密特征的融合,到Embedding考虑ID类特征的融合,以及FM机制低秩分解后二阶特征组合,最终通过业务指标需求,对模型进行针对性调整。
  • 特征维度逐步丰富到用户画像/骑手画像/商家画像/地址特征/轨迹特征/区域特征/时间特征/时序特征/订单特征等维度。

目前版本模型在比较了Wide&Deep、DeepFM、AFM等常用模型后,考虑到计算性能及效果,最终选择了DeepFM作为初步的Base模型。整个DeepFM模型特征Embedding化后,在FM(Factorization Machine)基础上,进一步加入deep部分,分别针对稀疏及稠密特征做针对性融合。FM部分通过隐变量内积方式考虑一阶及二阶的特征融合,DNN部分通过Feed-Forward学习高阶特征融合。模型训练过程中采取了Learning Decay/Clip Gradient/求解器选择/Dropout/激活函数选择等。

1.损失函数的选择

在ETA预估场景下,准时率及置信度是比较重要的业务指标ÿ

### 物流订单履约时效预测方法 #### 数据准备与特征工程 为了构建有效的物流订单履约时效预测模型,数据准备阶段至关重要。这涉及收集并整理历史订单数据、运输路径信息以及天气状况等多种因素。这些数据将作为输入特征用于训练机器学习模型。 - 历史订单详情:包括下单时间、发货时间送达时间等。 - 运输路线特性:如距离长短、交通拥堵情况等。 - 外部影响因子:比如季节变化、节假日安排和特殊事件的影响等[^1]。 #### 模型选择与设计 针对物流场景下的多目标需求特点,在选择合适的机器学习算法时需考虑能同时处理多个输出变量的能力。常见的回归类算法如线性回归、支持向量机(SVM),还有集成学习方法像随机森林(Random Forest)或梯度提升树(Gradient Boosting Trees, GBTs)都是不错的选择。此外,神经网络尤其是循环神经网络(RNN)及其变体LSTM/GRU也适用于序列化的时间序列数据分析任务。 ```python from sklearn.ensemble import RandomForestRegressor import pandas as pd # 加载预处理后的数据集 data = pd.read_csv('processed_logistics_data.csv') # 定义特征列名列表X_cols 和标签y_col X_cols = ['distance', 'traffic_condition', ... ] # 更多特征... y_col = 'delivery_time' # 创建RandomForestRegressor实例 model = RandomForestRegressor(n_estimators=100) # 训练模型 model.fit(data[X_cols], data[y_col]) ``` #### 预测评估与优化调整 完成初步建模之后,还需要通过交叉验证等方式来检验所选模型的表现效果,并据此做出必要的参数调优工作。常用的评价指标有均方误差(MSE)、平均绝对误差(MAE)等统计学测量标准。随着业务发展和技术进步,持续迭代改进现有方案也是保持竞争力的关键所在。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟知之

如果能帮助到你们,可否点个赞?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值