强化学习(五)-Deterministic Policy Gradient (DPG) 算法及公式推导

针对连续动作空间,策略函数没法预测出每个动作选择的概率。因此使用确定性策略梯度方法。

0 概览

  • 1 actor输出确定动作
  • 2 模型目标:
    actor目标:使critic值最大
    critic目标: 使TD error最大
  • 3 改进:
    使用两个target 网络减少TD error自举估计。

1 actor 和 critic 网络

  • 确定性策略网络
    actor: a= π ( s ; θ ) \pi(s;\theta) π(s;θ) 输出为确定性的动作a
  • 动作价值网络
    critic Q=q(s,a;w) ,用于评估动作a的好坏

2 critic网络训练

  • 观察一组数据 ( s t , a t , r t , s t + 1 ) (s_t,a_t,r_t,s_{t+1}) (st,at,rt,st+1)
    即在状态 s t s_t st时,执行动作 a t a_t at,得到奖励 r t r_t rt,和下一状态 s t + 1 s_{t+1} st+1
  • a t 时刻 Q 值 : q t = q ( s t , a t , w ) a_t时刻Q值: q_t=q(s_t,a_t,w) at时刻Q:qt=q(st,at,w)
  • a t + 1 时刻 Q 值 : q t + 1 = q ( s t + 1 , a t + 1 , w ) a_{t+1}时刻Q值: q_{t+1}=q(s_{t+1},a_{t+1},w) at+1时刻Q:qt+1=q(st+1,at+1,w) ,其中 a t + 1 = π ( s t + 1 ; θ ) a_{t+1}=\pi(s_{t+1};\theta) at+1=π(st+1;θ)
    即TD Target = r t + γ ∗ q t + 1 r_t+\gamma * q_{t+1} rt+γqt+1
  • 目标:使t时刻的TD error最小
    TD error: δ t = q t − ( r t + γ ∗ q t + 1 ) \delta_t=q_t-(r_t+\gamma * q_{t+1}) δt=qt(rt+γqt+1)
    w = w − α ∗ δ t ∗ ∂ q ( s t , a t ; w ) ∂ w w=w-\alpha *\delta_t* \frac{\partial q(s_t,a_t;w)}{\partial w} w=wαδtwq(st,at;w)

3 actor 网络训练

actor 网络目标是时critic值最大,所以要借助critic网络,将actor值带入critic网络,使critic最大。

  • a= π ( s ; θ ) \pi(s;\theta) π(s;θ) ,带入q(s,a;w)中 得到 q(s, π ( s ; θ ) \pi(s;\theta) π(s;θ) ;w)
    即使 q(s, π ( s ; θ ) \pi(s;\theta) π(s;θ) ;w) 最大
    θ \theta θ求导:
    g = ∂ q ( s , π ( s ; θ ) ; w ) ∂ θ = ∂ a ∂ θ ∗ ∂ q ( s , a ; w ) ∂ a g=\frac{\partial q(s,\pi(s;\theta);w)}{\partial \theta}=\frac{\partial a }{\partial \theta} *\frac{\partial q(s,a;w) }{\partial a} g=θq(s,π(s;θ);w)=θaaq(s,a;w)
  • 参数更新
    θ = θ + β ∗ g \theta=\theta + \beta* g θ=θ+βg

4 训练改进

4.1 主网络actor和critic更新

critic 网络更新时,在计算TD error时,使用了自举,会导致数据过高估计或者过低估计。
关键在于 t + 1 t+1 t+1时刻的 a t + 1 和 q t + 1 怎么生成 a_{t+1}和q_{t+1}怎么生成 at+1qt+1怎么生成
和其他方法一样,可以使用两个actor和两个critic网络,减少自举带来的估计。

  • t+1 时的 a t + 1 a_{t+1} at+1使用另一个target 策略网络actor生成
    a t + 1 = π ( s t + 1 ; θ ˉ ) a_{t+1}=\pi(s_{t+1};\bar\theta) at+1=π(st+1;θˉ)
  • 同样t+1时 q t + 1 q_{t+1} qt+1使用另一个target critic网络生成
    q t + 1 = q ( s t + 1 , a t + 1 ; w ˉ ) q_{t+1}=q(s_{t+1},a_{t+1};\bar w) qt+1=q(st+1,at+1;wˉ)

actor 参数更新方式不变。
critic更新方式变化,使用了target网络产生的 a t + 1 和 q t + 1 a_{t+1}和q_{t+1} at+1qt+1
在这里插入图片描述

4.2 target网络actor和critic更新

target 网络初始时来自主网络,后期更新时,部分来自主网络,部分来自自己。
w ˉ = τ ∗ w + ( 1 − τ ) ∗ w ˉ \bar w= \tau *w +(1-\tau) * \bar w wˉ=τw+(1τ)wˉ
θ ˉ = τ ∗ θ + ( 1 − τ ) ∗ θ ˉ \bar \theta= \tau *\theta +(1-\tau) * \bar \theta θˉ=τθ+(1τ)θˉ

5 其他改进措施

  • 添加经验回放, Experience replay buffer
  • 多步TD target
  • target networks
  • 20
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值