强化学习笔记:连续控制 & 确定策略梯度DPG

1 离散控制与连续控制              

 

         之前的无论是DQN,Q-learning,A2C,REINFORCEMENT,SARSA什么的,都是针对离散动作空间,不能直接解决连续控制问题。

        考虑这样一个问题:我们需要控制一只机械手臂,完成某些任务,获取奖励。机械 手臂有两个关节,分别可以在 [0, 360] [0, 180] 的范围内转动。这个问题的自由度 是 d = 2,动作是二维向量,动作空间是连续集合 A = [0, 360] × [0, 180]

        如果想把此前学过的离散控制方法应用到连续控制上,必须要对连续动作空间做离散化(网格化)。

        比如把连续集合 A = [0, 360] × [0, 180] 变成离散集合 A= {0, 20, 40, · · · , 360} × {0, 20, 40, · · · , 180}

  • 对动作空间做离散化之后,就可以应用之前学过的方法训练 DQN 或者策略网络,用 于控制机械手臂
  • 可是用离散化解决连续控制问题有个缺点。
    • 把自由度记作 d。自由度 d 越大,网格上的点就越多,而且数量随着 d 指数增长,会造成维度灾难。
    • 动作空间的 大小即网格上点的数量。如果动作空间太大,DQN 和策略网络的训练都变得很困难,强 化学习的结果会不好。
    • ——>上述离散化方法只适用于自由度 d 很小的情况;如果 d 不是很小, 就应该使用连续控制方法。

2 确定策略梯度

        确定策略梯度 (Deterministic Policy Gradient, DPG)) 是最常用的连续控制方法。
        DPG是一种 Actor-Critic 方法,它有一个策略网络(演员),一个价值网络(评委)。
        
        策略网络控制智能体做运动,它基于状态 s 做出动作 a
        价值网络基于状态 s 给动作 a 打分,从而指导策略网络做出改进。

 2.1 确定性策略网络

  • 这里的策略网络和之前DQN,A2C的策略网络略有不同:
    • 在之前的模型里,策略网络 π ( a | s ; θ ) 是 一个概率质量函数,它输出的是概率值【每个动作被执行的概率】。
    • 确定策略网络 µ ( s ; θ ) 的输出是 d 维的向量 a ,作为动作【a直接是μ的输出,没有随机性】。
    • 两种策略网络一个是随机的,一个是确定性的
actor-critic中的策略网络:

2.2 价值网络

        价值网络同样是对动作价值函数Q_\pi(s,a)的近似,但形式上也有不同:

 

actor-critic中的价值网络:

 3 算法推导

DPG可以看作一种异策略(off-policy)的方法。

我们把agent的轨迹整理成(s_t,a_t,r_t,s_{t+1})的四元组。

训练的时候,随机取一组四元组,其中训练策略网络μ(s;θ)的时候,只用到状态s_t;训练价值网络q(s,a;w)的时候,需要用到四元组(s_t,a_t,r_t,s_{t+1})中的所有元素

 

这里的ε指的是噪声

3.1 训练策略网络

 

  •  给定状态s,策略网络会输出动作 a=μ(s;θ)
  • 然后价值网络会根据s和a打一个分数q(s,a;w)
  • 参数θ影响a,进而影响q
    • ——>训练策略网络的目标就是改进θ,使得q最大
  • 训练策略网络的时候,如果当前状态是s,那么策略网络会输出动作μ(s,θ)
    • 那么此时价值网络的打分就是q(s,\mu(s;\theta);w)
  • 我们希望打分的期望越高越好,所以此时目标函数定义为打分的期望:

  • 所以此时策略网络的学习可以建模成\max_{\theta} J(\theta)
  • 注意,这里我们只训练策略网络,所以最大化问题中的优化变量是策略网络的参数 θ ,而
    价值网络的参数 w 被固定住
我们用梯度上升来增大J(θ),每一次用随机变量S的一组观测值来计算梯度

 

  • gj是\nabla_\theta J(\theta)的无偏估计,叫做确定策略梯度(DPG deterministic policy gradient)

 

这里我们是\theta \rightarrow a \rightarrow q

所以使用链式法则求出gj:

 3.2 训练价值网络

价值网络的目的是为了让q(s,a;w)的预测接近于真实价值函数Q_\pi(s,a)

同样地,我们使用TD来训练价值网络

4 整体训练流程

记当前策略网络和价值网络的参数为w_{now}\theta_{now}

  • 1 从经验回放数组中取出一个四元组(s_t,a_t,r_t,s_{t+1})
  • 2 让策略网络做预测
    • 注意!!!
      • 计算动作\hat{a_j}使用的是当前的策略网络\mu(s_j;\theta_{now}),用 \hat{a_j}来更新\theta_{now}
      • 而从经验回放中得到的aj则是用过时的策略网络\mu(s_j;\theta_{old})算出来的,它是用来更新w_{now}
      • ——>诠释了DPG是一个异策略的网络
  • 3 让价值网络做预测(注意什么地方用aj,什么地方用\hat{a_j}
  • 4  计算TD目标和TD误差
  • 5 更新价值网络 (注意什么地方用aj,什么地方用\hat{a_j}
  • 6  更新策略网络 (注意什么地方用aj,什么地方用\hat{a_j}

 

 

 

 

 

 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值