2020-7-3 吴恩达DL学习-C3结构化ML项目-w1 ML策略1(1.8 为什么是人的表现--对比机器算法和人类表现 / 贝叶斯最佳错误 / 如何让ML算法超过人类表现)

274 篇文章 24 订阅
233 篇文章 0 订阅

1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c
2.详细笔记网站(中文):http://www.ai-start.com/dl2017/
3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai

1.8 为什么是人的表现 Why human-level performance?

在过去的几年里,更多的ML团队一直在讨论如何比较ML系统和人类的表现,为什么呢?

我认为有两个主要原因

  • 首先是因为DL系统的进步,ML算法突然变得更好了。在许多ML的应用领域已经开始见到算法已经可以威胁到人类的表现了。
  • 其次,事实证明,当你试图让机器做人类能做的事情时,可以精心设计ML系统的工作流程,让工作流程效率更高。

所以在这些场合,比较人类和机器是很自然的,或者你要让机器模仿人类的行为。

我们来看个例子。
在这里插入图片描述

我看到很多ML任务中,你在一个问题上付出了很多时间,上图中代表时间的 x x x轴,可能是很多个月甚至是很多年。在这些时间里,一些团队或一些研究小组正在研究一个问题,当你开始往人类水平努力时,进展是很快的。但是过了一段时间,当这个算法表现比人类更好时,那么进展和精确度的提升就变得更慢了。

也许它还会越来越好,但是在超越人类水平之后,它还可以变得更好,但性能增速,准确度上升的速度这个斜率,会变得越来越平缓,我们都希望能达到理论最佳性能水平。

随着时间的推移,当您继续训练算法时,可能模型越来越大,数据越来越多,但是性能无法超过某个理论上限,这就是所谓的贝叶斯最优错误率(Bayes optimal error)。所以贝叶斯最优错误率一般认为是理论上可能达到的最优错误率,就是说没有任何办法设计出一个 x x x y y y的函数,让它能够超过一定的准确度。

例如,

  • 对于语音识别来说,如果 x x x是音频片段,有些音频就会很嘈杂,基本不可能知道说的是什么,所以完美的准确率可能不是100%。
  • 或者对于猫图识别来说,也许一些图像非常模糊,不管是人类还是机器,都无法判断该图片中是否有猫。所以,完美的准确度可能不是100%。

而贝叶斯最优错误率有时写作Bayesian,即省略optimal,就是从 x x x y y y映射的理论最优函数,永远不会被超越。所以你们应该不会感到意外,上图中的紫色线,无论你在一个问题上工作多少年,你永远不会超越贝叶斯(最佳)错误

事实证明,ML的进展往往相当快,直到你超越人类的表现之前一直很快,当你超越人类的表现时,有时进展会变慢。我认为有两个原因,为什么当你超越人类的表现时,进展会慢下来。

  • 一个原因是人类水平在很多任务中离贝叶斯最优错误率已经不远了,人们非常擅长看图像,分辨里面有没有猫或者听写音频。所以,当你超越人类的表现之后也许没有太多的空间继续改善了。
  • 第二个原因是,只要你的表现比人类的表现更差,那么实际上可以使用某些工具来提高性能。一旦你超越了人类的表现,这些工具就没那么好用了。
    在这里插入图片描述

对于人类相当擅长的任务,包括看图识别事物,听写音频,或阅读语言,只要你的ML算法比人类差

  • 你可以从让人帮你标记数据(label data),这样你就有更多的数据可以喂给学习算法。
  • 进行人工错误率分析(manual error analysis),只要人类的表现比任何其他算法都要好,你就可以让人类看看你算法处理的例子,知道错误出在哪里,并尝试了解为什么人能做对,算法做错。这样做有助于提高算法的性能。
  • 你也可以更好地分析偏差和方差。

一旦你的算法做得比人类好,上面三种策略就很难利用了。所以这可能是另一个和人类表现比较的好处,特别是在人类做得很好的任务上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值