2020-3-28 深度学习笔记15 - 表示学习 5(得益于深度的指数增益(深度的优势),提供发现潜在原因的线索(正则化策略))

第十五章 表示学习

官网
英文

2020-3-24 深度学习笔记15 - 表示学习 1(贪心逐层无监督预训练-目前已经不太使用)
2020-3-25 深度学习笔记15 - 表示学习 2(迁移学习和领域自适应)
2020-3-26 深度学习笔记15 - 表示学习 3(半监督解释因果关系causal factors -生成式对抗网络)
2020-3-27 深度学习笔记15 - 表示学习 4(分布式表示)

得益于深度的指数增益Exponential Gains from Depth

相比于浅层网络,一些函数能够用指数级小的深度网络表示。 缩小模型规模能够提高统计效率。

上一节的生成模型的示例,能够学习人脸图像的潜在解释因子,包括性别以及是否佩戴眼镜。 完成这个任务的生成模型是基于一个深度神经网络的。

浅层网络(例如:线性网络)不能学习出这些抽象解释因子和图像像素之间的复杂关系。
在这个任务和其他AI任务中(深度网络应用),这些因子几乎彼此独立地被抽取,但仍然对应到有意义输入的因素,很有可能是高度抽象的,并且和输入呈高度非线性的关系。 我们认为这需要深度分布式表示,需要许多非线性组合来获得较高级的特征(被视为输入的函数)或因子(被视为生成原因)。

非线性和重用特征层次结构的组合来组织计算,可以使分布式表示获得指数级加速之外,还可以获得统计效率的指数级提升

足够深的前馈网络会比深度不够的网络具有指数级优势。

一系列和卷积网络相关的深度回路族表达能力的理论结果,即使让浅度回路只去近似深度回路计算的函数,也能突出反映深度回路的指数级优势。

提供发现潜在原因(Underlying Causes)的线索

本章第三节中,曾经回答过“什么原因能够使一个表示比另一个表示更好?”。一个答案是,一个理想的表示能够区分生成数据变化的潜在因果因子,特别是那些与我们的应用相关的因素。

表示学习的大多数策略都会引入一些有助于学习潜在变差因素 underlying causal factors of
variation的线索。 这些线索可以帮助学习器将这些观察到的因素与其他因素分开。监督学习提供了非常强的线索:每个观察向量 x x x的标签 y y y,它通常直接指定了至少一个变差因素。

正则化策略对于获得良好泛化是很有必要的。 当不可能找到一个普遍良好的正则化策略时,深度学习的一个目标是找到一套相当通用的正则化策略,使其能够适用于各种各样的AI任务(类似于人和动物能够解决的任务)。

在此,我们提供了一些通用正则化策略的列表,给出了一些学习算法是如何发现对应潜在因素的特征的具体示例。

  • 平滑:假设对于单位 d d d和小量 ϵ \epsilon ϵ
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值