深度学习
文章平均质量分 93
没人不认识我
学无止境
展开
-
2020-11-16 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai第三周 序列模型和注意力机制 Sequence to sequence models3.1 基础模型 Basic models注意力机制可以增强序列模原创 2020-12-01 15:24:29 · 431 阅读 · 0 评论 -
2021-2-6 吴恩达-C5 序列模型-w3 序列模型和注意力机制(课后编程1-Neural Machine Translation 神经机器翻译)
原文链接如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。序列模型和注意力机制 Neural Machine Translation 机器翻译1.将人类可读日期翻译成机器可读日期1.1数据集欢迎来到本周的第一个编程作业!你将构建一个神经机器翻译 (NMT) 模型,将人类可读日期 (“25th of June, 2009”) 翻译为机器可读日期 (“2009-06-25”)。你将使用注意力模型执行此操作,它是序列模型中最复杂的序列之一。这个作业是与NVIDI原创 2021-02-06 11:29:13 · 448 阅读 · 0 评论 -
2021-1-22 吴恩达-C5 序列模型-W1 循环序列模型(课后作业)
参考https://zhuanlan.zhihu.com/p/41201441问题1假设你的训练样本是句子(单词序列)。下面哪个选项指的是第i个训练样本中的第j个词?x(i)<j>x^{(i)<j>}x(i)<j>。正确x<i>(j)x^{<i>(j)}x<i>(j)x(j)<i>x^{(j)<i>}x(j)<i>x<j>(i)x^{<j>(i)}x<j&原创 2021-01-22 13:22:35 · 492 阅读 · 0 评论 -
2021-1-13 吴恩达-C5 序列模型-w2 自然语言处理与词嵌(课后编程2-Emojify 表情生成器)
原文链接如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。自然语言处理与词嵌 Operations on word vectors 词向量运算1-基准模型:Emojifier-V11.1-数据集EMOJISET欢迎来到第二周的第二个编程作业。你将使用单词向量表示来构建表情生成器。你有没有想过让你的短信更有表现力?你的emojifier应用程序将帮助你做到这一点。所以与其写“恭喜你升职了!我们喝杯咖啡聊聊天吧。“我爱你!”表情生成器可以自动将此转换为“恭喜你升原创 2021-01-17 16:01:08 · 642 阅读 · 2 评论 -
2021-1-9 吴恩达-C5 序列模型-w2 自然语言处理与词嵌(课后编程1-Operations on word vectors 词向量运算-含UnicodeDecodeError解决)
原文链接如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。自然语言处理与词嵌 Operations on word vectors 词向量运算欢迎来到本周的第一个作业。因为词嵌入的训练成本非常高,大多数ML实践者都会加载一组预先训练好的词嵌入数据。...原创 2021-01-10 15:02:28 · 604 阅读 · 2 评论 -
2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)
原文链接如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。循环序列模型 Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛1 问题描述1-1 数据集和预处理欢迎来到恐龙岛!6500万年前,恐龙就存在了,在这次任务中它们又回来了。你负责一项特殊任务。生物学研究人员正在创造新的恐龙品种,并将它们带到地球上,而你的工作就是给这些恐龙命名。如果一只恐龙不喜欢它的名字,它可能会发疯,所以明智地选择!原创 2021-01-03 13:12:50 · 841 阅读 · 0 评论 -
2020-12-27 吴恩达-C5 序列模型-w1 循环序列模型(课后编程1-Building your Recurrent Neural Network - Step by Step搭建RNN)
原文链接如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。循环序列模型 Building your Recurrent Neural Network - Step by Step一步步搭建循环神经网络1-基本循环神经网络的前向传播1-1RNN单元欢迎来到课程5序列模型的第一个作业。在这个作业中,你将在numpy中实现你的第一个循环神经网络。循环神经网络(RNN)具有“记忆性”,在自然语言处理和其他序列任务中非常有效。他们可以一次读取一个输入x⟨t⟩x^{\l原创 2021-01-01 10:45:07 · 623 阅读 · 1 评论 -
2020-12-22 吴恩达-C4 卷积神经网络-w4 人脸识别和神经风格转换(课后编程2-Neural Style Transfer神经风格转换)
使用本地的Art Generation with Neural Style Transfer - v2.ipynb文件。先在cmd中运行jupyter notebook然后打开Art Generation with Neural Style Transfer - v2.ipynb就可以了。人脸识别和神经风格转换 Deep Learning & Art: Neural Style Transfer神经风格转换1-问题描述2-迁移学习3-神经风格转换欢迎来到本周第二个编程作业。在本练习中原创 2020-12-26 16:16:47 · 799 阅读 · 1 评论 -
2020-12-14 吴恩达深度学习课程和《深度学习》一书对比
疫情期间打算学习深度学习,参照网上经验,学习了Ian Goodfellow(伊恩·古德费洛)、Yoshua Bengio(约书亚·本吉奥)和Aaron Courville(亚伦·库维尔)的《深度学习》一书,以及吴恩达的深度学习课程(5课)。整个过程大约持续了1年,有些感悟。《深度学习》一书过于学术性,看得实在有点吃力,而且很枯燥。相对而言,吴恩达的课程则通俗易懂,更注重实际应用。不过吴恩达课程里没有基础知识介绍,需要自己补充学习。所以建议,先学习一下《深度学习》一书的第一部分前5章,线性代数,概率和信原创 2020-12-14 10:46:49 · 546 阅读 · 1 评论 -
2020-12-13 吴恩达-C4 卷积神经网络-w4 人脸识别和神经风格转换(课后编程1-Face Recognition for the Happy House人脸识别)
使用本地的Face Recognition for the Happy House - v3.ipynb文件。先在cmd中运行jupyter notebook然后打开Face Recognition for the Happy House - v3.ipynb就可以了。人脸识别和神经风格转换 Face Recognition for the Happy House人脸识别欢迎来到第四周的第一个编程作业。你将构筑一个人脸识别系统。这里的许多想法来自FaceNet。在课堂中,吴恩达也讨论了 De原创 2020-12-20 15:47:30 · 1023 阅读 · 0 评论 -
2020-12-9 吴恩达-卷积神经网络-w4 人脸识别和神经风格转换(课后作业)
问题1脸部验证只需要将新图片与1个人的面部进行比较,而人脸识别则需要将新图片与K个人的面部进行比较。True。正确False人脸识别问题比人脸验证问题难很多,这是1对K问题课程链接==================================================================问题2为什么我们要在人脸验证中学习函数d(img1,img2)?为了解决一次学习one-shot的问题。正确。考虑到我们只有很少的照片,我们需要将它运用到迁移学习中。这原创 2020-12-14 11:07:10 · 726 阅读 · 0 评论 -
2020-12-8 吴恩达-卷积神经网络-w3 目标检测(课后作业)
问题1你打算要构建一个能够识别三个对象并定位位置的算法。这些对象是:行人(c=1),汽车(c=2),摩托车(c=3)。下图中的标签哪个是正确的?注:y=[pcp_cpc,bxb_xbx,byb_yby,bhb_hbh,bwb_wbw,c1c_1c1,c2c_2c2,c3c_3c3]y=[1, 0.3, 0.7, 0.3, 0.3, 0, 1, 0].正确y=[1, 0.7, 0.5, 0.3, 0.3, 0, 1, 0]y=[1, 0.3, 0.7, 0.5, 0.5, 0, 1原创 2020-12-08 13:53:09 · 592 阅读 · 0 评论 -
2020-12-7 吴恩达-卷积神经网络-w2 实例探究(课后作业)
问题1Which of the following do you typically see as you move to deeper layers in a ConvNet?在典型的卷积神经网络中,随着网络的深度增加,你能看到的现象是?nH and nW increases, while nC also increases。nH和nW增加,nC也增加。nH and nW increases, while nC decreases。nH和nW增加,nC减少。nH and nW decrease原创 2020-12-07 14:01:55 · 1549 阅读 · 0 评论 -
2020-12-2 吴恩达-卷积神经网络-w1 卷积神经网络(课后作业)
原文如下问题1你认为把下面这个过滤器应用到灰度图像会怎么样?检测到水平边缘检测到垂直边缘。正确检测到45度边缘检测到图像对比度因为过滤器左边的部分是正的(较亮),右边的部分是负的(较暗)。课程链接。============================================================问题2假设你的输入是一个300×300的彩色(RGB)图像,而你没有使用卷积神经网络。如果第一个隐藏层有100个神经元,每个神经元与输入层进行全连接,那么这个隐藏原创 2020-12-02 14:25:53 · 3339 阅读 · 0 评论 -
2020-11-30 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.10 触发字检测-声音唤醒设备)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.10 触发字检测 Trigger word dection现在你已经学习了很多关于DL和序列模型的内容,于是我们可以真正去简便地描绘出一个触发字系统(原创 2020-11-30 09:51:52 · 237 阅读 · 0 评论 -
2020-11-27 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.9 语音辨识--音位表示法(人工设计),注意力模型,CTC模型)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.9 语音辨识 Speech recognition现今,最令人振奋的发展之一,就是seq2seq模型(sequence-to-sequence mod原创 2020-11-27 11:18:24 · 211 阅读 · 0 评论 -
2020-11-25 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.8 注意力模型)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.8 注意力模型 Attention model在上节课中你已经见到了,注意力模型如何让一个NN只注意到一部分的输入句子。当它在生成句子的时候,更像人类原创 2020-11-25 15:33:47 · 219 阅读 · 0 评论 -
2020-11-24 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.7 注意力模型直观理解-注意力权重)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.7 注意力模型直观理解 Attention model intuition在本周大部分时间中,你都在使用这个编码解码的构架(a Encoder-Dec原创 2020-11-24 12:54:53 · 584 阅读 · 0 评论 -
2020-11-23 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.6 Bleu 得分-评估机器翻译/图像描述(生成文本算法),判断输出结果是否与人工写出的参考文本含义相似。)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.6 Bleu 得分(选修)Bleu score(optional)机器翻译(machine translation)的一大难题是一个法语句子可以有多种原创 2020-11-23 13:22:29 · 268 阅读 · 0 评论 -
2020-11-20 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.5 定向(束)搜索的误差分析-判断是RNN或者束搜索问题)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.5 定向搜索的误差分析 Error analysis on beam search在这五门课中的第三门课里,你了解了误差分析是如何能够帮助你集中时间原创 2020-11-20 13:38:51 · 193 阅读 · 0 评论 -
2020-11-19 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.4 改进定向搜索-长度归一化,称为归一化的对数似然目标函数。取每个单词的概率对数值的平均。非精确搜索,速度快)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.4 改进定向搜索 Fefinements to beam search上节课中, 你已经学到了基本的束搜索算法(the basic beam sea原创 2020-11-19 11:32:57 · 250 阅读 · 0 评论 -
2020-11-18 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.3 定向搜索-集束搜索,集束宽。集束宽=1,只考虑1种可能结果,就变成了贪婪搜索,不好。)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.3 定向搜索 Beam search这节课中你会学到集束搜索(定向搜索,beam search)算法,上节课中我们讲了对于机器翻译来说,给定输入,比如原创 2020-11-18 10:54:38 · 243 阅读 · 0 评论 -
2020-11-17 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.2 选择最可能的句子-条件语言模型,选择最可能结果。采用近似搜索,而不是贪心搜索)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.2 选择最可能的句子 Picking the most likely sentenceseq2seq机器翻译模型和我们在第一周课程所用的语言模型之间有原创 2020-11-17 10:24:44 · 232 阅读 · 0 评论 -
2020-11-16 吴恩达DL学习-C5 序列模型-W3 序列模型和注意力机制(3.1 基础模型-seq2seq模型-机器翻译/image to sequence模型-图像描述)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai3.1 基础模型 Basic models在这一周,你将会学习seq2seq(sequence to sequence)模型,从机器翻译到语音识别,它们都原创 2020-11-16 10:11:19 · 224 阅读 · 0 评论 -
2020-11-12 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.10 词嵌入除偏)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.10 词嵌入除偏 Debiasing Word Embeddings现在ML和人工智能算法正渐渐地被信任用以辅助或是制定极其重要的决策,因此我们想尽可原创 2021-01-10 15:12:19 · 244 阅读 · 0 评论 -
2020-11-11 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.9 情绪分类-使用RNN模型,考虑词序)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.9 情绪分类 Sentiment Classification情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西,这是NLP中最重原创 2021-01-10 15:12:06 · 266 阅读 · 0 评论 -
2020-11-10 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.8 GloVe 词向量-定义c和t为任意两个位置相近的单词,将他们之间的差距进行最小化处理)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.8 GloVe 词向量 GloVe word vectors你已经了解了几个计算词嵌入的算法,另一个在NLP社区有着一定势头的算法是GloVe算法,这原创 2021-01-10 15:11:53 · 225 阅读 · 0 评论 -
2020-11-9 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.7 负采样-1个正采样和K个负采样生成训练集,解决softmax计算量大问题)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.7 负采样 Negative sampling在上节课中,你见到了Skip-Gram模型如何帮助你构造一个监督学习任务,把上下文映射到了目标词上,它如原创 2021-01-10 15:11:38 · 245 阅读 · 0 评论 -
2020-11-5 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.6 Word2Vec-Skip-Gram模型,缺点-分级softmax的计算成本非常昂贵)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.6 Word2Vec在上节课中你已经见到了如何学习一个神经语言模型来得到更好的词嵌入,在本节课中你会见到 Word2Vec算法,这是一种简单而且计算时原创 2021-01-10 15:11:19 · 259 阅读 · 0 评论 -
2020-11-4 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.5 学习词嵌入-语言模型问题,输入一些上下文,例如目标词的前4个词然后预测出目标词)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.5 学习词嵌入 Learning word embeddings在本节课中,你将要学习一些具体的算法来学习词嵌入。在深度学习应用于学习词嵌入的历史上,原创 2021-01-10 15:11:05 · 204 阅读 · 0 评论 -
2020-11-3 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.4 嵌入矩阵-嵌入矩阵E乘以one-hot向量O=嵌入向量e)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.4 嵌入矩阵 Embedding matrix接下来我们要将学习词嵌入这一问题具体化,当你应用算法来学习词嵌入时,实际上是学习一个嵌入矩阵,我们来看一原创 2021-01-10 15:10:53 · 291 阅读 · 0 评论 -
2020-11-2 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.3 词嵌入的特性-类比推理/余弦相似度)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.3 词嵌入的特性 Properties of word embeddings到现在,你应该明白了词嵌入是如何帮助你构建自然语言处理应用的。词嵌入还有原创 2021-01-10 15:10:24 · 254 阅读 · 0 评论 -
2020-10-30 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.2 使用词嵌入--词嵌入的迁移学习)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.2 使用词嵌入 Using word embeddings上一节课中,你已经了解不同单词的特征化表示了。这节你会看到我们如何把这种表示方法应用到NLP原创 2021-01-10 15:10:12 · 255 阅读 · 0 评论 -
2020-10-29 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入(2.1 词汇表征-为什么要学习或者使用词嵌入 )
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai2.1 词汇表征 Word representation上周我们学习了RNN、GRU单元和LSTM单元。本周你会看到我们如何把这些知识用到NLP上,用于自原创 2021-01-10 15:10:00 · 200 阅读 · 0 评论 -
2020-10-29 吴恩达DL学习-C5 序列模型-W2 自然语言处理与词嵌入
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai第二周 自然语言处理与词嵌入 NLP and Word Embeddings2.1 词汇表征 Word representation自然语言处理与深度原创 2021-01-10 15:09:33 · 438 阅读 · 0 评论 -
2020-10-28 吴恩达DL学习-C5 序列模型-W1 循环序列模型(1.12 深层循环神经网络 )
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai1.12 深层循环神经网络 Deep RNNs目前你学到的不同RNN的版本,每一个都可以独当一面。但是要学习非常复杂的函数,通常我们会把RNN的多个层堆叠原创 2021-01-01 10:52:09 · 212 阅读 · 1 评论 -
2020-10-26 吴恩达DL学习-C5 序列模型-W1 循环序列模型( 1.11 双向循环神经网络BRNN-自然语言处理-考虑单词在句子中过去和未来的信息来判断)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai1.11 双向神经网络 Bidirectional RNN现在,你已经了解了大部分RNN模型的关键的构件,还有两个方法可以让你构建更好的模型,其中之一原创 2021-01-01 10:51:57 · 190 阅读 · 1 评论 -
2020-10-22 吴恩达DL学习-C5 序列模型-W1 循环序列模型(1.10 长短期记忆(LSTM)-改善梯度消失-在序列中学习非常深的连接-)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai1.10 长短期记忆(LSTM) LSTM (long short term memory) unit在上节课中你已经学了GRU(门控循环单元)。它能够让原创 2021-01-01 10:51:43 · 285 阅读 · 1 评论 -
2020-10-21 吴恩达DL学习-C5 序列模型-W1 循环序列模型(1.9 GRU门控循环单元-改善梯度消失-在序列中学习非常深的连接-简化和完整版本-记忆细胞)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai1.9 GRU 单元 Gated Recurrent Unit (GRU)你已经了解了基础的RNN模型的运行机制,在本节课中你将会学习门控循环单元,它改变原创 2021-01-01 10:51:31 · 245 阅读 · 1 评论 -
2020-10-20 吴恩达DL学习-C5 序列模型-W1 循环序列模型(1.8 带有神经网络的梯度消失-深度网络(导数指数型下降),后面的输出反向传播很难影响前面的层/补充:梯度爆炸用梯度修剪解决)
1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c2.详细笔记网站(中文):http://www.ai-start.com/dl2017/3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai1.8 带有神经网络的梯度消失 Vanishing gradients with RNNs你已经了解了RNN时如何工作的了,并且知道如何应用到具体问题上,原创 2021-01-01 10:51:18 · 224 阅读 · 0 评论