前言
本文的主要内容是泊松过程的简单介绍及其例题分析。
一、泊松过程的定义
计数过程:
设N(t)表示到时刻t为止已发生的“事件A”的总数,若N(t)满足下列条件:
则称随机过程 {N(t),t≥0} 为计数过程。
独立增量过程:
如果计数过程N(t)在不相重叠的时间间隔内,事件A发生的次数是相互独立的,此时计数过程N(t)是独立增量过程。
平稳增量过程:
若计数过程N(t)在(t,t+s](s>0)内,事件A发生的次数N(t+s)-N(t)仅与时间差s有关,而与开始时间t无关,则计数过程N(t)是平稳增量过程。
泊松过程:
定义一:
设计数过程 {X(t),t≥0} 满足下列条件:
(1)X(0)=0;
(2)X(t)是独立增量过程;
(3)在任一长度为t的区间中,事件A发生的次数服从参数 ʎt>0 的泊松分布,即对任意 s,t≥0,有:
则称计数过程 {X(t),t≥0} 为具有参数 ʎ>0 的泊松过程。
定义二:
设计数过程 {X(t),t≥0} 满足下列条件:
(1)X(0)=0;
(2)X(t)是独立平稳增量过程;
(3)X(t)满足下列两式:
则称计数过程 {X(t),t≥0} 为具有参数 ʎ>0 的泊松过程。
该定义说明,在充分小的时间间隔内,最多有一个事件发生,而不能有两个或两个以上事件同时发生。
二、泊松过程的数字特征
设{X(t),t≥0} 是泊松过程,对任意的 t,s∈[0,∞),且 s<t,有:
又X(0)=0,均值、方差的计算如下:
相关函数的计算如下:
协方差的计算如下:
这是在 s<t 时得到的协方差结果,一般地,泊松过程的协方差函数可以表示为:
泊松过程的特征函数为:
三、非齐次泊松过程
1.定义及性质
设计数过程 {X(t),t≥0} 满足下列条件:
则称计数过程 {X(t),t≥0} 为具有跳跃强度为 ʎ(t) 的非齐次泊松过程。
非齐次泊松过程的均值函数为:
非齐次泊松过程的概率分布:
2.例题
总结
以上就是泊松过程概念介绍与例题分析的所有内容了,需要特别注意非齐次泊松过程的应用。