卷积核[H*W*Cin]--->卷积核是立体的,卷积核的个数=下一层Feature Map的个数

本文深入探讨了卷积神经网络中卷积核的维度[H*W*Cin],解释了为何卷积核的个数等于下一层特征图的数量,阐述了这一特性在深度学习中的作用,帮助理解卷积层的计算过程。
摘要由CSDN通过智能技术生成

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值