为什么交叉熵损失函数对于不平衡的数据集效果不好

交叉熵损失函数是一种常用的监督学习损失函数,它可以有效地评估预测值与真实值之间的差距。然而,对于不平衡的数据集,交叉熵损失函数可能不够有效。这是因为不平衡的数据集中,一些类别的样本数量明显多于其他类别,这会导致模型更倾向于预测多数类别,从而忽略了少数类别。因此,在不平衡的数据集上使用交叉熵损失函数可能会导致模型的性能不佳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值