交叉熵损失函数是一种常用的监督学习损失函数,它可以有效地评估预测值与真实值之间的差距。然而,对于不平衡的数据集,交叉熵损失函数可能不够有效。这是因为不平衡的数据集中,一些类别的样本数量明显多于其他类别,这会导致模型更倾向于预测多数类别,从而忽略了少数类别。因此,在不平衡的数据集上使用交叉熵损失函数可能会导致模型的性能不佳。
为什么交叉熵损失函数对于不平衡的数据集效果不好
最新推荐文章于 2023-11-12 19:27:20 发布
交叉熵损失函数是一种常用的监督学习损失函数,它可以有效地评估预测值与真实值之间的差距。然而,对于不平衡的数据集,交叉熵损失函数可能不够有效。这是因为不平衡的数据集中,一些类别的样本数量明显多于其他类别,这会导致模型更倾向于预测多数类别,从而忽略了少数类别。因此,在不平衡的数据集上使用交叉熵损失函数可能会导致模型的性能不佳。