零极点的左半平面/右半平面什么意思

在我们从事模拟电子电路的工作过程中,经常会遇到分析零极点的情况。也经常会查阅资料,看到说该零/极点是左半平面或右半平面零/极点,所以blabla……

那么什么是系统的左右半平面零极点呢?我们又如何去理解它,利用它,最终的能从0到1的去分析它?

理解零极点的左右半平面,先得理解

一、左右半平面是什么的左右半平面?——也即坐标系是什么?

       首先说,这个坐标系画的是什么的零极点?一般情况下,该坐标系是用来绘制一个信号系统的系统函数的。如下图,为最基本的反馈系统图,

其对应的系统函数,为

F\left ( s \right )=\frac{H\left ( s \right )}{1+\beta H\left ( s \right )}

。可见该公式,一般为拉普拉斯变换的函数,如果用傅里叶变换,我们面对的函数可以写成

F\left ( j\omega \right )=\frac{H\left ( j\omega \right )}{1+\beta H\left ( j\omega \right )}

。实际一个意思。假设该函数是有两个极点,一个零点,那么函数一定可以变化成下式的形状,

F\left ( s \right )=\frac{as+b}{cs^{2}+ds+e}

进而变化成

F\left ( s \right )=\frac{a\left ( s-z_{zeropoint} \right )}{c\left ( s-p_{polepoint1} \right )\left ( s-p_{polepoint2}\right )}

通过解该函数,往往可以得到该函数对应的解,该解可能为实数,也可能为复数。我们就姑且全认为是复数了,得到三个解

z_{zeropoint}=r_{zero}+j\omega _{zero}

p_{polepoint1}=r_{pole1}+j\omega _{pole1}

p_{polepoint2}=r_{pole2}+j\omega _{pole2}

然后我们可以根据该函数计算出系统的零极点,绘制在坐标系中。可见,坐标系为一个复数坐标系,横轴为实数轴,竖轴为虚数轴。此处我将实数轴的字母使用了r表示,没有用传统的Re[]和Im【】,其中深意看后文就能明白。

二、零极点数值的意义是什么?——实部和虚部分别是什么?

      前面的内容,已经明白坐标轴是什么。那么现在零极点的问题,就是实轴和虚轴具体是什么了。文章主题讨论的是电子电路,那么自然应该对应到电子电路上。

       这个问题的真实本质,实际上是为什么电路系统分析的时候要引入复变函数的概念。在此,我特别想吐槽一下,““实数”“虚数”两个词,翻译得真的不怎么好。"虚"字容易给人一种“虚数”就是不存在的数的感觉。“复数”的本质,应该是二维数,虚数的本质,也只是二维数的另一维而已。复变函数,说白了就是就是二维向量的计算。

       在信号领域,分析问题时,对于复杂的模型,几乎形成了一种固定方案,就是进行系统函数的傅里叶变换。因为再信号领域,每一个信号其实都带有两个参数,一个是当前信号点所在的时间点,另一个是当前信号点所拥有的信号幅值。用傅里叶变换,可以很好地将两个信号独立出去。傅里叶变换体现出了极强的周期性。因此可以用极坐标方式表现出来。如下面的gif图。

很明显,一个系统函数就一定是可以这样表示出来的了。只是系统函数可能不会像上图中三角函数这样的规整。

       此时,对于图中的坐标系,左侧图中每一个点,距离原点的位置,就是右侧波形图的Y轴数值,也可以说其实就是振幅了。坐标中的每一个点与原点之间的连线,与实轴正半轴之间会有一个角度,这就是其实表达的是信号在每一个周期内当前的时间点。假设转动的速度,也即角频率是\omega,则每一个点的角度就是\omega t。从图中,我们也可以看出来,所谓的零点,其实就是振幅为0的点,所谓的极点,则是振幅为无穷大的点。

       回到主题,不管是是零点还是极点,它都是系统函数的一个解。系统函数的解是什么——也即s是什么?直接说答案,s是在某一个频率下,系统中某个零极点节点看到的阻抗。那么它的实数部分,也即不含有相位的部分,自然是纯电阻;而它的虚数部分,含有相位,自然就是电感电容的影响了。此时,就可以理解为什么前文将虚数表示成r_{zero}+j\omega _{zero}的形式。

       假设极点处于左半平面,则r部分为负值;处于右半平面,则r部分为正值。这时候朋友们或许就愤怒了,“啥玩意儿,电阻怎么能是负的?”——能,见下图。

在图中,只要电阻和电容的电流方向不一致时,就会出现极点计算的s为复数的情况。

       这怎么理解呢?

       其实就是,电容此时的电流方向,与电阻不一致,那么电压越大的时候,其增加的电流必然一部分倒灌进入电阻中,那么岂不是电压越大,倒灌的越多,在电阻上看到的就是电压越大电流越小。那可不就成了负电阻了么。——说句非人话,就是此时电容的相位到了后半段,进入放电阶段了(a b 图情形)。

三、如何在电路中对应?——具体是个什么物理意义?

       如前文所述,如果在左半平面,则电阻为负,其实也表现出此时电阻和电容电流方向不一致的情形。以极点为例,如下图。

       如果以零点为例呢?关键是我们如何去从电路中判断?来,来,来,我们再做一个假设,假设有这样一个电路,熟悉吧,不特殊吧。

在这个图中,当放大器为正向放大的时候,输入每增大ΔV,输出增大更多,必然导致输入输出之间的压差为(A-1)ΔV。这样,加载在零点电容上的电压就更大,进而导致零点电容上的逆向电流增大,或者正向电流减小。电压越大,压差越大,逆向电流越大或者正向电流越小,这可不就是个负电阻么。(为什么这个电容是零点电容,请参考我另外一篇博文——什么是电路系统的零极点_零极点分析-CSDN博客

那如果放大器为反向放大的时候,输入输出影响方式相反。自然就导致正电阻的现象了。如下图。

所以,在某些共源极电路中,会有个正半平面零点,在共漏极电路中,有负半平面零点。如下图,(相信大家能看懂,我就不细节标注哪个是共源那个是共漏,也不标注每个器件是干嘛的了)。

这些正负半平面零点的分布,也完全可能跟随着负载不同而变化。如共源极电路中,如果负载是个电阻,那么当然,放大倍数就是负数,零点自然是个正半平面零点。可是如果负载是个电感呢?我没自己推算,可以想象,我们一定有办法将放大倍数变成正数。那时候,零点就到了负半平面了。这些都要具体情况具体分析。本文的目的,在于理解正半平面,负半平面的物理意义,多的内容,暂时不展开了。

       创作不易,可以说是太累了,朋友们一定要大胆点赞、收藏、关注,不要不好意思,不然,我坚持不下去了。谢谢

~完~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神仙来了我也爱吃火锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值