爽!强化学习+注意力机制,吞吐量提升了10多倍!

通过引入注意力机制,强化学习模型不仅能够更加高效地处理复杂的环境和任务,还能在学习和决策过程中实现更高的精度和适应性。

因此这种结合迅速成为了各大领域的研究热点,而且已经在实际应用中有了显著的性能提升。比如分散式强化学习框架SACD-A,算法训练样本吞吐量直接提高了10倍!

目前,强化学习+注意力机制主要有三大研究方向:状态表示、动作选择、奖励预测。今天我就从这三大方向入手,分享10篇强化学习+注意力机制的代表性成果,文档里还附上了每个方向的代码示例,帮助同学们理解。

论文原文+开源代码需要的同学看文末

状态表示中的注意力机制

在强化学习中,状态表示指的是描述当前环境的关键信息。通过在这一阶段引入注意力机制,算法可以更有效地关注状态表示中的关键信息,从而提高学习效率和性能。

具体步骤

  • 通过注意力机制确定状态向量中各元素的权重。

  • 依据权重,对状态向量加权求和,形成新的状态表示。

  • 将优化后的状态表示用于动作选择。

算法原理

论文示例

Improving Au
### 矢量空间解耦 (VSD) 的作用 矢量空间解耦是一种技术,旨在通过分离不同维度上的特征表示来提高模型性能和效率。具体来说,在神经网络架构中应用此方法可以实现更有效的参数利用以及更好的泛化能力。 对于卷积神经网络(CNNs),传统做法是在单一的空间域内处理图像数据。然而,当涉及到视频分析或其他具有时空特性的任务时,仅依赖于空间信息可能不足以捕捉完整的动态变化模式。因此,引入了时间维度上的额外处理机制——即所谓的“时间卷积”。 在每个残差块中,除了常规的二维空间卷积外还加入了专门针对时间轴的一维卷积操作[^1]。这种设计使得网络能够同时学习到帧间的时间关系与单张图片内部的空间结构之间的相互影响,从而增强了对序列型视觉数据的理解力。 此外,在基于Transformer架构的设计里,则采用了类似的思路:不仅保留原有的多头自注意力机制用于建模局部区域内的交互情况;而且新增了一个沿时间轴工作的Temporal Transformer Block,它模仿其对应的空间版本工作方式并接受可训练的位置编码作为输入之一。这进一步促进了长时间跨度下事件发展的有效表征。 #### 应用场景 - **视频理解**:通过对连续帧之间差异的学习,提升动作识别、行为检测等任务的表现。 - **自然语言处理中的对话系统**:帮助机器更好地理解和预测人类交流过程中话语间的逻辑联系及其演变趋势。 - **强化学习环境下的决策制定**:使智能体能够在考虑过去经历的基础上做出更加合理的行动规划。 ```python import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, channels): super().__init__() self.spatial_conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.temporal_conv = nn.Conv1d(channels, channels, kernel_size=3, padding=1) def forward(self, x): identity = x out = self.spatial_conv(x) out = self.temporal_conv(out.permute(0, 1, 3, 2).contiguous()).permute(0, 1, 3, 2) out += identity return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值