通过引入注意力机制,强化学习模型不仅能够更加高效地处理复杂的环境和任务,还能在学习和决策过程中实现更高的精度和适应性。
因此这种结合迅速成为了各大领域的研究热点,而且已经在实际应用中有了显著的性能提升。比如分散式强化学习框架SACD-A,算法训练样本吞吐量直接提高了10倍!
目前,强化学习+注意力机制主要有三大研究方向:状态表示、动作选择、奖励预测。今天我就从这三大方向入手,分享10篇强化学习+注意力机制的代表性成果,文档里还附上了每个方向的代码示例,帮助同学们理解。
论文原文+开源代码需要的同学看文末
状态表示中的注意力机制
在强化学习中,状态表示指的是描述当前环境的关键信息。通过在这一阶段引入注意力机制,算法可以更有效地关注状态表示中的关键信息,从而提高学习效率和性能。
具体步骤
-
通过注意力机制确定状态向量中各元素的权重。
-
依据权重,对状态向量加权求和,形成新的状态表示。
-
将优化后的状态表示用于动作选择。