层析背景定向纹影
对于基于局部折射率变化的气体运动可视化,背景定向纹影(BOS,也称为合成纹影)是激光成像方法的一种简单且经济高效的替代方法。它具有非侵入式,分辨率高等优点。同时,该方法也具有一些局限性,它对噪声非常敏感,同时该方法依赖于密度变化小的假设。因此,用该方法直接重构三维流场精度会受到影响。
BOS方法获得空间中的温度场
在本文中,作者用Tomo-BOS方法获得了3D温度场的连续照片,并构建了一个基于不可压缩NS方程和传热方程的物理神经网络(PINN),通过网络对输入的3D温度场进行处理,还原真实的三维流场、压力场、温度场等。
物理信息神经网络
物理信息神经网络(PINN)是一种将物理知识融入神经网络模型以提高其准确性和鲁棒性的机器学习方法。 它使用描述系统基础物理学的偏微分方程 (PDE) 作为神经网络训练过程中的约束。 通过结合这些物理约束,PINN 能够生成更准确的预测,同时仍保留从数据中学习复杂关系的能力。在本文中,作者用到了不可压缩NS方程和传热方程
网络的最终损失函数定义如下,由残差损失和误差损失两者共同决定。该部分非常直观:左侧由输入的3D温度场和预测的3D温度场决定,右侧由控制函数决定:
结果
1. 预测温度场和真值的误差:二范数误差小于1%
2. 重构速度场和压力场
3. 判断残差损失:动量方程计算得到的平均残差数量级为,符合前文中设计PINN所用控制方程
4. 改变了时间分辨率,从到
,误差0.362%
5. 改变了输入温度场的空间分辨率,误差0.43%
6. 改变了物理参数,在该实验场景下,PINN网络对于物理参数(特别是Ri)特别敏感