融合LSTM与Transformer做时间序列预测,发高分轻轻松松!

LSTM结合Transformer,在时间序列预测上效果拔群!不仅巧妙融合了二者的优势,还构建了一个强大而灵活的预测框架,为我们处理复杂时间序列数据提供了更牛x的工具。

这方向如今是深度学习领域的热门研究主题,前景非常可观,在工业物联网(如设备故障预警)、智慧城市(如交通流量预测)、生物医学、环境科学(如气象预测)等领域都有广泛应用。相关成果频繁发表于顶会顶刊,尤其是跨学科相关的。

如果想做创新,建议聚焦模型轻量化、注意力机制优化、跨领域应用,并结合实际工业需求设计实验(如大时滞、多变量场景)。本文整理了10篇LSTM+Transformer+时序预测新论文,需要参考的自取~

全部论文+开源代码需要的同学看文末

Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework

方法:论文提出了一种基于LSTM-Transformer框架的电动汽车能耗预测方法,通过整合车辆参数、环境因素、驾驶风格和驾驶条件等多维度特征,利用LSTM处理时间序列数据的短期依赖性,并结合Transformer的自注意力机制捕捉长期依赖关系,从而实现高精度的电动汽车电池剩余电量(SOC)预测。

创新点:

  • 提出了一种基于电池电压和电流随时间积分的数值重构方法,用于精确估计电动车能耗变化。

  • 引入了一种基于LSTM-Transformer模型的电动车能耗预测框架,与传统模型相比,提高了预测精度和泛化能力。

  • 提出了基于短途电力消耗预测的长途电动车能耗预测新方法,在选定的数据集上表现出良好的预测精度。

A hybrid Transformer-LSTM model apply to glucose prediction

方法:论文提出了一种基于混合Transformer-LSTM模型的血糖预测方法,利用连续血糖监测(CGM)系统收集的数据,通过结合Transformer的长距离依赖捕捉能力和LSTM的时间序列建模优势,实现了对血糖水平的高精度预测。

创新点:

  • 提出了一种创新的混合模型,将Transformer的全局数据上下文处理能力与LSTM的时间序列建模优势相结合,用于提升血糖预测的准确性。

  • 通过对大量CGM数据集的训练和验证,证明了混合Transformer-LSTM模型在实时血糖预测中的优越性。

TCLN: A Transformer-based Conv-LSTM network for multivariate time series forecasting

方法:论文提出了一种基于Transformer和LSTM的多变量时间序列预测模型TCLN,通过结合Transformer的自注意力机制和LSTM的时间序列建模能力,同时引入多核卷积神经网络来提取空间特征,有效捕捉时间序列中的长期依赖、空间关联和时空相关性,显著提升了多变量时间序列预测的准确性。

创新点:

  • 多核卷积神经网络(CNN)层用于提取比传统简单CNN更丰富的空间信息。

  • 结合Transformer编码器层和长短期记忆(LSTM)网络,TCLN模型能够有效捕获时间序列中的长期时序信息。

  • 通过将自回归(AR)模型集成到TCLN中,增强了模型的鲁棒性。

A time series driven model for early sepsis prediction based on transformer module

方法:论文提出了一种基于LSTM+Transformer的时间序列预测模型,用于早期预测脓毒症。通过分析患者在脓毒症发病前4小时、8小时和12小时的时间序列数据,模型在12小时时间窗口内表现出色,准确率达到0.964,显著优于传统方法。

创新点:

  • 提出了一种创新的基于Transformer架构的时间序列数据预测模型,专门用于预测脓毒症的早期发生。

  • 引入了不同的时间窗口(如发病前4小时、8小时和12小时)来收集患者的时间序列数据,并通过调整时间窗口来比较不同模型的预测能力。

  • 开发了一个将预测模型与医院信息系统集成的框架,通过实时收集患者数据来测试模型。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“融合时序”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

### LSTMTransformer时间序列预测分类任务中的对比 #### LSTM的应用特点 长期短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),设计用来克服传统RNN训练过程中遇到的梯度消失/爆炸问题。通过引入门控机制——输入门、遗忘门以及输出门,LSTM能够有效地捕捉长时间依赖关系,在处理具有较长历史记录的时间序列数据方面表现出色[^1]。 ```python import torch.nn as nn class LSTMPredictor(nn.Module): def __init__(self, input_size=1, hidden_layer_size=100, output_size=1): super().__init__() self.hidden_layer_size = hidden_layer_size self.lstm = nn.LSTM(input_size, hidden_layer_size) self.linear = nn.Linear(hidden_layer_size, output_size) def forward(self, input_seq): lstm_out, _ = self.lstm(input_seq.view(len(input_seq), 1, -1)) predictions = self.linear(lstm_out.view(len(input_seq), -1)) return predictions[-1] ``` #### Transformer的优势体现 相比之下,Transformers最初是为了应对自然语言处理挑战而开出来的模型结构,但很快就被证明同样适用于其他类型的顺序建模任务,比如时间序列分析。核心在于自注意力机制允许并行化操作的同时保持对全局上下文的理解能力,这使得它可以在不牺牲效率的情况下更好地处理更复杂的模式识别需求[^4]。 ```python from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerModel config = TimeSeriesTransformerConfig() model = TimeSeriesTransformerModel(config=config) def transformer_predictor(inputs_embeds=None, past_key_values=None, **kwargs): outputs = model( inputs_embeds=inputs_embeds, past_key_values=past_key_values, **kwargs ) last_hidden_state = outputs.last_hidden_state return last_hidden_state[:, -1].unsqueeze(1) # 取最后一个token作为预测值 ``` #### 性能差异考量因素 当考虑两者之间的优劣时,有几个重要因素值得探讨: - 数据特性:如果时间序列存在明显的周期性和趋势成分,则LSTM可能表现更好;而对于那些内部关联复杂且长度不定的数据集来说,Transformer往往更具优势。 - 计算资源:由于其高度并行化的架构,Transformer通常能够在现代GPU硬件上实现更快的速度和更高的吞吐量,尤其是在大规模数据集上训练时这一点尤为明显。 - 参数数量:一般来说,同等条件下,Transformer会拥有更多可调参数,这意味着更强的学习能力和潜在过拟合风险。因此,合理设置正则项和其他防止过拟合的技术变得至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值