Contextual Classification with Functional Max-Margin Markov Networks

基于最大间隔马尔科夫网络的上下文分类

摘要

我们解决了计算机视觉中的标签分配问题:给定一个新颖的三维或二维场景,我们希望为每个位置(体素,像素、超像素)分配一个唯一的标签。为此,马尔科夫随机场已被证明是一种选择模型,因为它使用上下文信息来产生优于局部分类器的改进的分类结果。在这项工作中,我们采用了一种函数梯度方法来学习随机场的高维参数,以便于执行离散的多标签分类。通过这种方法,我们可以比以前使用的学习方法更好地学习涉及高阶交互的健壮模型。我们在点云分类的背景下验证了该方法,并改进了现有技术。此外,我们成功的证明了该方法在从图像中恢复三维几何表面这一具有挑战性的视觉问题上的通用性。

1介绍

我们考虑标签分配的任务,其中我们希望给域中的每个站点分配一个唯一的标签;我们将站点定义为域中的原始实体。在计算机视觉应用中,像素和超像素通常用作图像应用中的位置,在处理三维激光数据时使用点或体素。在本文中,我们将这个问题作为一个有监督的学习问题来处理,在这个问题中,我们给定一个带标签的数据,提取包含多层次上下文信息的各种类型的特征,然后有区别地训练一个模型,该模型考虑了站点之间的上下文交互。为了模拟这些相互作用,我们使用了条件随机场变量。本文的贡献是采用最近的函数梯度技术来学习这种随机场。正如实验部分所展示的,这种方法可以比以前的学习方法更准确地学习涉及高阶交互的健壮模型。
在该项工作中,我们采用这些功能梯度技术来学习马尔可夫随机场的潜在功能,用于离散多标签上下文分类。我们在两个应用中验证了该方法的有效性。首先,我们提高了三维点云分类的技术水平,这是一项已知可以很好地处理随机场的任务。在第二个例子中,我们说明了模型在一项任务中的一般性。
我们表明,用函数梯度技术学习的模型比以前使用的学习方法有显著改善,并且与【8】中使用的方法相当。在图1中,我们展示了这两个应用程序的示例分类结果。
CRF是一种用于在邻近站点之间传播上下文信息的流行工具。与CRF的最大后验概率学习相比,我们关注最大间距马尔可夫网络。我们使用函数梯度算法而不是参数梯度算法来学习最大间隔马尔可夫网络。该算法实施简单,不需要二次或线性程序解算器,并且它的低内存需求支持在大数据集上学习。我们的实验表明,我们在这里介绍的技术对于精确学习具有多达1000个参数的大型模型时可行的。
与MAP学习不同,最大间隔学习为结构化预测问题提供了不同的凸目标。与MAP学习类似,最大间隔学习也要求在计算梯度时进行推理;然而,正如我们将回顾的,只需要MAP的标签。提出的最大差值法遵循了库马等人的意见,即在训练和测试中使用相同的近似推理。由于最大间隔学习不需要计算间隔,我们可以通过使用高效的图割推理来学习,这通常比信念转换或变异更快,也更准确。

相关工作

我们的方法使用functional gradient boosting来学习M3Ns。这项技术被解释为提升了我们想要学习的随机场的势函数空间。

结论

在本文中,我们采用函数梯度技术来学习M3N模型,以便执行离散的多标签分类。通过公式,我们展示了两种不同的应用,与以前的方法相比,我们可以学习赶紧的高阶模型。此外,我们还展示了如何将该模型与强大的潜力想结合,以保留不太重要的标签。未来的工作将使用非线性电位。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值