永磁同步电机流频比(I/F)控制及Matlab/Simulink仿真分析

文章介绍了流频比I/F控制方法在永磁同步电机(PMSM)中的应用,该方法能避免过电流并提供良好的负载转矩匹配。通过Matlab/Simulink进行了详细的仿真分析,包括控制算法、电流环处理和主电路设计,并展示了仿真结果,为PMSM的无感启动提供了理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

本章节采用流频比I/F控制方法驱动永磁同步电机的转动,首先分析流频比I/F的控制原理,然后在Matlab/Simulink中进行永磁同步电机流频比I/F控制系统的仿真分析,为后续PMSM无感启动做铺垫。


一、流频比I/F控制原理

PMSM的恒压频比V/F控制是保持电机的电压和频率之比固定,即磁通为常数,既不需要转速闭环控制,也不需要进行电流采样,是一种完全的开环控制方式。VF控制有两个明显的不足:不具备负载转矩匹配能力,转速容易产生振荡;最佳V/F曲线的整定比较困难,容易引起电机过电流。
有关PMSM恒压频比开环控制请阅读:
永磁同步电机恒压频比(V/F)开环控制系统Matlab/Simulink仿真分析及代码生成到工程实现
相比于恒压频比V/F控制,流频比I/F控制是一种转速开环,电流闭环的控制方式,可以直接控制定子绕组电流幅值,因此这种控制方式不会出现电机过电流现象;通过控制定子绕组电流,使电机具有较好的负载转矩匹配能力,依靠“转矩-功角自平衡”特性,使电机具备较强的抗负载扰动能力。I/F控制框图如下所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、永磁同步电机I/F控制系统Matlab/Simulink仿真分析

在这里插入图片描述
上图为PMSM流频比I/F整体控制框图,为了后续模型生成代码进行工程实现,本示例将IF控制算法部分单独建立模型,通过调用IF控制算法模型进行PMSM的流频比I/F控制。

2.1.仿真电路分析

在这里插入图片描述
在这里插入图片描述

2.1.1 I/F控制算法

在这里插入图片描述

IF控制算法如上图所示,Id_Ref设置为0,Iq_Set设置为电机额定电流1.2A。
位置角通过如下生成:目标速度除以时间得到加速度,此示例加速度设置为1200/3=400,即3s的时间速度由0加速为1200。
在这里插入图片描述
对加速度求积分得到速度,再通过下式将速度换算为角频率
在这里插入图片描述
在这里插入图片描述
再通过 we=2pif 将角频率换算为角速度
在这里插入图片描述
对角速度求积分得到电角度。
在这里插入图片描述
将电角度减去pi/2,使给定的虚拟同步dvqv坐标系滞后实际的基准dq坐标系90°
在这里插入图片描述
通过mod函数将角度换算到0~2*pi之间
在这里插入图片描述

2.1.2 电流环

在这里插入图片描述
上图为PMSM控制的电流环,有关PMSM电流环的的介绍请阅读:
永磁同步电机(PMSM)磁场定向控制(FOC)及Matlab/Simulink仿真分析

2.1.3 输出处理

在这里插入图片描述
对I/F控制算法的输出电压做处理,使其落在[0,1]的范围内
在这里插入图片描述

2.1.4 主电路

在这里插入图片描述
有关主电路及电机参数设置请阅读:
永磁同步电机恒压频比(V/F)开环控制系统Matlab/Simulink仿真分析及代码生成到工程实现

2.2 仿真结果分析

电机转速:3s后达到设定的目标转速1200RPM
在这里插入图片描述
电机定子电流:电流幅值为设定的给定值1.2A
在这里插入图片描述
电机实际转子位置:
在这里插入图片描述
同步旋转坐标系下的定子电流Id、Iq:
在这里插入图片描述
同步旋转坐标系下的定子电压:
在这里插入图片描述
电磁转矩:
在这里插入图片描述


总结

本章节采用流频比I/F控制方法驱动永磁同步电机的转动,首先分析了流频比I/F的控制原理,然后在Matlab/Simulink中进行了永磁同步电机流频比I/F控制系统的仿真分析,为后续PMSM无感启动奠定基础。

模型及代码工程获取:
在这里插入图片描述

### 永磁同步电机 IF 控制原理 永磁同步电机PMSM)由于其高效、高功率密度以及优良的动态响应性能,在多个领域得到广泛应用,包括但不限于动汽车、工业自动化和航空航天等[^1]。对于 PMSM 的精确控制而言,通常会应用矢量控制(FOC),该技术利用坐标变换将复杂的三相交系统转化为较为简单的两相直系统,进而简化了控制逻辑的设计。 然而,在某些特定应用场景下,可能并不具备安装传感器来获取转子的位置信息,此时就需要采用无感控制策略——即所谓的间接反馈(Indirect Feedback, IF)控制方法。这种方法依赖于估算而非直接测量获得必要的状态变量数据,比如转速与位置信号。 #### 数学建模基础 从数学模型角度出发可以更好地理解 IF 控制机制。在 dq 轴坐标系中描述 PMSM 行为时,磁转矩表达式能够帮助解释如何通过调节定子分量影响产生的机械力矩[^2]: \[ T_e = \frac{3}{2} p (i_d \lambda_f + i_q L_d i_d - i_d L_q i_q )\] 其中 \(T_e\)磁转矩;\(p\) 代表极对数;\(\lambda_f\) 和 \(L_{d,q}\) 分别表示由永久磁铁引起的磁链及 d-q 轴感参数;而 \(i_{d,q}\) 则对应着经过 Clarke-Park 变换后的直轴(d-axis)和交轴(q-axis)上的分量。 #### 实现方案概述 当涉及到实际工程实践中的 IF 强拖启动过程时,则需考虑更多因素以确保系统的稳定性和可靠性。例如,在 Simulink 中实现这一功能不仅涉及到了增补处理、位置补偿校正等方面的工作,还包括了开环到闭环模式切换期间代码自动生成的支持[^3]。 ```matlab % MATLAB/Simulink 示例代码片段用于展示部分核心概念 function [id_ref,iq_ref]=if_control(iabc,vabc,Rs,Ld,Lq,pwm_freq,Ts) % 进行Clarke-Park变换... % 计算并调整参考指令值... end ``` 上述函数展示了基于MATLAB/Simulink平台的一个简单示例框架,它接收来自逆变器端口处测得的实际压/采样序列作为输入,并输出期望达到的目标设定点给后续环节使用。请注意这只是一个非常粗略的概念示意,真实世界里的解决方案往往更加复杂精细。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值