【VIO笔记(学习VINS的必备基础)】第三讲 基于优化的IMU和视觉融合的实现原理

本文介绍了基于优化的视觉惯性里程计(VIO)的实现原理,涵盖融合框架、最小二乘法、高斯-牛顿法和列文伯格-马夸特法。讨论了VIO的残差函数,包括视觉、IMU预积分和系统残差,强调了预积分方差和雅克比矩阵在VIO中的重要性。
摘要由CSDN通过智能技术生成

系列教程来自某学院,侵权删除。
学习完这一系列课程再去看VINS才能做到不吃力,不然直接撸网上的各种VINS解析完全云里雾里-_-!

融合框架

基于优化的VIO融合原理上是从视觉的BA发展而来,其代价函数是多个重投影误差的和,详见十四讲。在VIO中还需要考虑IMU的数据,因此需要对多个传感器的数据进行融合,这里分为松耦合和紧耦合,目前比较火的方案如VINS等都使用紧耦合。
在这里插入图片描述

最小二乘

最小二乘定义是找到一个x使得代价函数F(x)的取值最小,F(x)是由多个f(x)的平方求和组成的。所以这个问题叫做最小二乘,意义是求f(x)的二次方之和的最小值。在SLAM中这个问题基本上是非线性的,所以对该F(x)求解析形式的导数形式是不现实的(即无法使用直接求解法),一般需要进行泰勒展开使用迭代下降法求解。
F ( x + Δ x ) = F ( x ) + J ( x − x k ) + 1 2 Δ x T H ( x k ) Δ x + o n F(\mathbf x+\Delta \mathbf x) = F(\mathbf x)+\mathbf J(\mathbf x-\mathbf x_k)+\frac1{2}\Delta \mathbf x^T\mathbf H(\mathbf x_k)\Delta \mathbf x+o^n F(x+Δx)=F(x)+J(xxk)+21ΔxTH(xk)Δx+on
其中的J和H分别是F对x的一阶导和二阶导矩阵。
最小二乘的求解有一阶和二阶梯度下降法,但是由于其本身具有较大缺陷(一阶法过于贪心,会走出锯齿路线;二阶法需要计算H矩阵),一般不会在实际SLAM系统中使用。

G-N和L-M

针对上述方法的问题,我们采用更实用的高斯牛顿法和LM法,其中GN法是对f(x)进行泰勒展开,从而避免H的计算。上述的最速下降法适用于迭代的开始,而牛顿法适用于最优值附近,那么将两者结合的方案就是LM法。
GN法对f(x)进行一阶泰勒展开,在这里插入图片描述
并将上式带入F(x),得到:
在这里插入图片描述
此时将F(x)的表达式与牛顿法做对比,可以发现使用J来近似表达了H,从而避免了H的计算,对上式求 Δ x \Delta x Δx的一阶导并令其等于0,得到:
在这里插入图片描述
也就是我们经常看到的 H Δ x = b \mathbf H\Delta x=\mathbf b HΔx=b,求解这个方程就能得到待估计的x。
而LM法则在上述增量方程中加入了阻尼因子:
在这里插入图片描述
它的作用是保证左边的H矩阵正定,确保迭代方向是朝着下降的方向进行,μ 非常大时,接近最速下降法;μ 比较小时,接近高斯牛顿法。它的更新策略在g2o和ceres里采取的是Nielsen策略:
在这里插入图片描述
那么整个最小二乘的求解步骤总结为:
1 找到一个合适的关于状态量x 的残差函数fi(x)
2 计算残差函数对状态量x 的雅克比J。
3 选定cost function 以及其参数。
4 LM 算法求解。
这些量也是我们接下来要在VIO系统中弄清楚的。

VIO残差函数

min ⁡ χ { ∣ ∣ r p − H p χ ∣ ∣ 2 ⏟ m a r g i n a l i z a t i o n   r e s i d u a l + ∑ k ∈ B ∣ ∣ r B ( z ^ b k + 1 b k , χ ) ∣ ∣ 2 ⏟ I M U   r e s i d u a l + ∑ ( l , j ) ∈ C ∣ ∣ r c ( z ^ l c j , χ ) ∣ ∣ P l c i 2 ⏟ v i s u a l   r e s i d u a l } \min_{\chi} \left\{ \underbrace{\left|\left|r_p-H_p \chi \right|\right|^2}_{marginalization~residual} + \underbrace {\sum_{k\in B} \left|\left|r_B(\hat{z}_{b_{k+1}}^{b_k}, \chi)\right|\right|^2}_{IMU~residual} + \underbrace{\sum_{(l,j)\in C}\left|\left|r_c(\hat{z}_l^{c_j},\chi) \right|\right|^2_{P_l^{c_i}}}_{visual~residual}\right\} χminmarginalization residual rpHpχ2+IMU residual kBrB(z^bk+1bk,χ)2+visual residual (l,j)Crc(z^lcj,χ)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值