多模态融合方法总结

这篇博客深入探讨了多模态深度学习中如MMTM、GLPNet、RDFNet等融合策略,强调了非局部聚合、注意力机制在网络中的重要性,以及深度感知卷积神经网络在RGB-D语义分割中的作用。文章还介绍了通道交换等方法在深层多模态融合中的创新应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MMTM: Multimodal Transfer Module for CNN Fusion

                                 

Global-Local Propagation Network (GLPNet) 

 Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate

 RGB-D Fusion Network (RDFNet)

 

Non–local aggregation for RGB–D semantic segmentation 

 

 Attention Complementary Network (ACNet)

 

Attention-based Fusion Block (AFB)

 

 CANet: Co-attention network

 

 Depth-aware Convolutional Neural Network (D-CNN)

 

Deep Multimodal Fusion by Channel Exchanging 

 【论文分享】Deep Multimodal Fusion by Channel Exchanging - 知乎 (zhihu.com)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值