Ubuntu 16.04深度学习环境搭建

Ubuntu 16.04深度学习环境搭建

所需软件

  • NVIDIA驱动

  • CUDA9.0

  • CUDNN7.0

  • Anaconda3.5.0.0

  • Tensorflow1.8

NVIDIA驱动

下载cuda_10.1.168_418.67_linux.run

下载cuda 10 的目的是为了安装NVIDIA驱动,而我们实际工作使用的是cuda 9

wget https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.168_418.67_linux.run
sudo chmod +x *.run # 赋予所有run文件可执行文件
sudo ./cuda_10.1.168_418.67_linux.run # 因为文件比较大,需要加载较长时间

按Ctrl+F可以快速跳过这些前言,然后我们只安装NVIDIA驱动,所以其他的我们全部选择no。

驱动安装完成之后,我们用nvidia-smi查看我们的显卡运行状态,如果成功显示,则驱动安装成功。

安装cuda9.0

下载 cuda 9.0

wget https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda_9.0.176_384.81_linux-run

创建我们 cuda9.0 解压的文件夹

mkdir -p local/cuda9.0
./cuda_9.0.176_384.81_linux.run # 因为我们不用安装驱动了,所以可以不用sudo权限,直接运行它就好

驱动选择no,toolkit选择yes,路径输入我们刚才的路径,应该要输入绝对路径,/home/michael/local/cuda9.0。记得把michael改成你们自己的用户名,然后其他都选择no。img

这时候我们的cuda9.0就安装好了,我们进入到它的bin文件夹中,运行命令查看cuda版本。

cd local/cuda9.0/bin/
./nvcc -V

img

添加环境变量

我们这里查看的命令是./nvcc -V,我们之所以输入./,是因为nvcc这个已经编译好的程序只存在于local/cuda9.0/bin/这个当前目录下,并不是全局目录下,如果我们要让我们的程序能够在全局调用得到我们的cuda,我们需要将cuda加入到环境变量里面,因此,而在我们的主文件夹(Home)下,有一个环境变量 的配置文件.bashrc,这是一个隐藏文件,使用ls -a可以看见。

我们编辑.bashrc这个文件,然后将我们cuda的目录信息加入到里面,刷新环境变量,这时候我们的cuda就变成全局了(~/是指我们的默认目录,就是我们的home目录)。

vim ~/.bashrc

然后按i进入insert模式,到最下面一行,添加我们的配置信息。

# cuda9.0
export PATH=/home/michael/local/cuda9.0/bin:$PATH
export LD_LIBRARY_PATH=/home/michael/local/cuda9.0/lib64:$LD_LIBRARY_PATH
export C_INCLUDE_PATH=/home/michael/local/cuda9.0/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/home/michael/local/cuda9.0/include:$CPLUS_INCLUDE_PATH

img

然后按:wq保存并退出。

刷新一下环境变量

source ~/.bashrc

这时候输入这个就可以查看cuda版本信息了,而不需要加入./

nvcc -V

Cudnn7.0

下载 Cudnn7.0


配置Cudnn的步骤很简单,把cudnn的头文件库文件拷贝到cuda安装文件夹里面就好了
我们从Nvidia官网上下载下来的cudnn for linux的文件格式是.solitairetheme8,想要解压的话需要先转成tgz格式再解压:

cp cudnn-9.0-linux-x64-v7.5.0.56.solitairetheme8 cudnn-9.0-linux-x64-v7.5.0.56.tgz

1.解压,生产的文件夹叫cuda,最后cp(拷贝)完后这个文件夹就可以删掉了

tar -zxvf cudnn-9.0-linux-x64-v7.5.0.56.tgz

2.cp(拷贝)这个文件夹

cp cuda/include/cudnn.h local/cuda9.0/include/
cp -a cuda/lib64/* local/cuda9.0/lib64/

img

Anaconda3.5.0.0

下载 Anaconda3-5.0.0-Linux-x86_64.sh

wget https://repo.anaconda.com/archive/Anaconda3-5.0.0-Linux-x86_64.sh

运行安装程序

sh Anaconda3-5.0.0-Linux-x86_64.sh

然后输入yes再按回车采用默认路径就行了。
img
安装完成时,它问你要不要加入到环境变量里面,我们选择yes,然后它会把它的解压的目录自行添加到~/.bashrc里面。
img
这时候我们可以查看我们的~/.bashrc,可以看到环境变量里面以及由Anaconda了。
img
重新打开终端,会刷新环境变量(或者手动用source ~/.bashrc刷新一下),我们输入Python,可以看到Anaconda的字样。
img

修改pip源

cd ~/

创建.pip目录

mkdir -p .pip

进入.pip目录

cd .pip

编辑(之前若无则新建) pip.conf文件

vim pip.conf

然后按i进入insert状态,粘贴我们的配置信息。

[global] 
index-url=https://pypi.tuna.tsinghua.edu.cn/simple 
[install]
trusted-host=pypi.tuna.tsinghua.edu.cn 
disable-pip-version-check = true 
timeout = 6000

然后按:wq保存并退出,这时候我们的pip配置信息已经完成了。

Tensorflow1.8

pip install tensorflow-gpu==1.8

img

这时候它提示我们的tensorflow以及它的依赖包已经安装好了,那我们检验一下。

img

这个不是报错,它只是提升在未来版本有些函数会改变,其实只要更新一下h5py就行了。

pip install -U h5py

然后再import tensorflow试一下。

img

这时候就完全没有问题了,到这里,基于GPU的Tensorflow已经安装完成了。

参考:https://blog.csdn.net/Wuzebiao2016/article/details/87886356

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值