有效的市场假说无法解决金融资产中的许多异常现象和反复出现的可利用模式。这就是为什么与被动投资相比,主动投资组合管理仍是主导方的原因。
金融市场不是完全随机的,而是类似随机的,即它们显示出低的信噪比。换句话说,很难预测市场,甚至很难持续获利。但是,“很难”一词并不意味着不可能。在本文中,我们将学习混沌理论及其在金融市场中的定义。然后,我们将开发一个指标,该指标使用的公式接近于“重标范围”计算,该公式通常与分形数学(fractal mathematics)有关。
本文来自《数据黑客》,登录官网可阅读更多精彩资讯和文章。
混沌理论导论
混沌理论是一个非常复杂的数学领域,其工作是解释很小的因素的影响。在思考混沌理论时会想到蝴蝶效应。蝴蝶效应暗指看起来无关紧要的因素可能导致极端变化。混沌系统是在可预测性和随机性之间交替的环境,这是迄今为止我们对金融市场的最接近的解释。有效的市场假设无法彻底解释市场动态,最好使用真实的交易结果和历史表现来判断市场是否可预测。
混沌理论的早期实验是由气象学家爱德华·洛伦兹(Edward Lorenz)进行的,他想通过结合不同的变量(例如温度和风速)来模拟天气序列。洛伦兹(Lorenz)注意到,只要他对变量进行微小的调整,最终结果就会大不相同。这是“蝴蝶效应”的第一个证明,它是混沌理论的支柱之一。
混沌理论相对于金融市场的假设是,价格是最后改变的东西,当前价格是最重要的信息。
如上所述,Lorenz已证明混沌系统受其变量的最小变化的影响。这使我们考虑到某个时间,如果某些财务信息没有发布或有所不同,市场价格会如何波动?
市场情绪也都有助于确定市场价格。想象一下,如果一家大型对冲基金改变了在最后一刻购买欧元兑美元的主意,而这一信息已经向公众公开了。许多交易员本来希望沿着对冲基金跟随巨大的看涨趋势,但最终他们改变了主意,这实际上可能导致欧元兑美元价格下跌。这就是为什么我通过诸如COT报告之类的工具来分析市场情绪的原因。
但这与我要介绍的内容都不相关。我之所以说混沌理论,是因为我在下面显示的指标使用了与此领域相关的公式。即使混沌理论在财务上的应用仍然模糊不清,没有多少支持,但这不应阻止我们尝试新事物。让我们可以开始设计分形指标吧。
分形指标
英国水文学家哈罗德·埃德温·赫斯特(Harold Edwin Hurst)介绍了在所分析的时间段内时间序列变化的度量。此度量称为重标范围分析,它是我们的分形指标的基础。以下是计算重新调整范围的方法:
重新缩放范围公式非常有趣,因为它考虑了波动率( S ),均值( X-bar )和数据范围以分析其属性。上面的公式表示的是,我们必须计算最大值和最小值的最小范围之间的范围,然后将它们除以标准差,后者通常用于衡量波动性。
我修改了公式,使其具有以下含义,稍后将逐步介绍该方法:
结合高点和低点可以使我们更加清楚地了解波动率,这就是为什么我们将首先计算前X个周期的低点和高点的指数移动平均线,然后计算它们各自的标准差(即波动率)。接下来,我们将计算第一个范围,在该范围内,我们将从第一步中由指数移动平均线测得的平均高点减去当前高点,然后对低点执行相同操作。之后,我们将计算第一个范围的滚动最大值(高减去平均值),第二个范围的滚动最小值(低减去平均值)。然后,通过将结果除以上面针对高点和低点计算的两个标准偏差之间的平均值,可以在重新缩放之前从低滚动最小值中减去高滚动最大值。
所有这些都使用以下函数完成,该函数需要一个OHLC序列:
def fractal_indicator(Data, high, low, ema_lookback, min_max_lookback, where):
Data = ema(Data, 2, ema_lookback, high, where)
Data = ema(Data, 2, ema_lookback, low, where + 1)
Data = volatility(Data