摘要:本文提出了DOT(Dynamic Object Tracking),这个DOT可以作为前端添加到现存的slam算法中增加在动态环境中的精度和鲁棒性。
Object instance segmentation部分采用Deep Learning的方法,由于这部分计算量很大,无法实现实时性,作者采用了mask propagate 的方法。这个mask propagate 方法有很多方法都可以做到,这部分不做详细的介绍。
相机的追踪,采用了最小化重投影后的光度误差的方式。如下面的式子,优化蓝色的部分,exp()并表示的做扰动,感觉没有必要在论文中写成这样的形势,图曾理解的困难。
物体的追踪也采用的重投影光度误差,表达形式与上述方式类似。当我们获取了前后相机相对比较准确的位姿的变换关系,优化物体的六自由度的移动(式子中的红色的部分)使得下面的式子的loss最小即可。
动态物体的判断:作者并没有采用计算出的To来直接判断目标物体是不是动态物体。采用了在图像坐标系下计算dynamic disparity的方式。使用大白话来表示是,当物体移动矩阵是To的时候把点投影到图像上,假设物体不移动(这种情况下To是单