线性方程
在第1.2节中,我们发展了一种分析方法,用于寻找可分离微分方程的显式解。尽管许多有趣的问题会导致可分离方程,但大多数微分方程并不是可分离的。我们在第1.3至第1.6节中发展出的定性和数值技术适用于更广泛的问题。如果我们能通过发展方法来找到不可分离方程的显式解,那将是很好的。
不幸的是,目前没有一种通用的技术能够计算出适用于所有微分方程的显式解。虽然我们知道根据存在定理,每一个合理的微分方程都有解,但我们无法保证这些解由熟悉的函数(如多项式、正弦、余弦和指数函数)构成。实际上,它们通常并不是。几个世纪以来,数学家们通过发展各种专门的技术来处理这个难题。这些技术今天作为一行命令在像Maple和Mathematica这样的高级计算软件中可供使用。
尽管如此,你应该熟悉几种适用于最常见类型方程的标准分析技术。在本节和第1.9节中,我们将介绍两种解决最重要类型微分方程——线性微分方程的标准技术。
线性微分方程
一阶微分方程是线性的,如果它可以写成以下形式:
d y d t = a ( t ) y + b ( t ) , \frac{dy}{dt} = a(t)y + b(t), dtdy=a(t)y+b(t),
其中 a ( t ) a(t) a(t) 和 b ( t ) b(t) b(t) 是 t t t 的任意函数。线性方程的例子包括:
d y d t = t 2 y + cos t , \frac{dy}{dt} = t^2 y + \cos t, dtdy=t2y+cost,
其中 a ( t ) = t 2 a(t) = t^2 a(t)=t2 和 b ( t ) = cos t b(t) = \cos t b(t)=cost;以及
d y d t = e 4 sin t t 3 + 7 t y + 23 t 3 − 7 t 2 + 3 , \frac{dy}{dt} = \frac{e^4 \sin t}{t^3 + 7t} y + 23t^3 - 7t^2 + 3, dtdy=t3+7te4sinty+23t3−7t2+3,
其中 a ( t ) = e 4 sin t t 3 + 7 t a(t) = \frac{e^4 \sin t}{t^3 + 7t} a(t)=t3+7te4sint 和 b ( t ) = 23 t 3 − 7 t 2 + 3 b(t) = 23t^3 - 7t^2 + 3 b(t)=23t3−7t2+3。
有时,需要做一点代数运算才能看出一个方程是否线性。例如,微分方程
d y d t − 3 y = t y + 2 \frac{dy}{dt} - 3y = ty + 2 dtdy−3y=ty+2
可以重写为
d y d t = ( t + 3 ) y + 2. \frac{dy}{dt} = (t + 3)y + 2. dtdy=(t+3)y+2.
在这种形式下,我们可以看到方程是线性的,且 a ( t ) = t + 3 a(t) = t + 3 a(t)=t+3 和 b ( t ) = 2 b(t) = 2 b(t)=2。
一些微分方程符合多个类别。例如,方程
d y d t = 2 y + 8 \frac{dy}{dt} = 2y + 8 dtdy=2y+8
是线性的,其中 a ( t ) = 2 a(t) = 2 a(t)=2 和 b ( t ) = 8 b(t) = 8 b(t)=8(两者都是常数函数)。它也是自变量的,因此也是可分离的。
“线性”一词指的是因变量 y y y 在方程中只出现一次幂。微分方程
d y d t = y 2 \frac{dy}{dt} = y^2 dtdy=y2
不是线性的,因为 y 2 y^2 y2 无法重写成形式为 a ( t ) y + b ( t ) a(t)y + b(t) a(t)y+b(t) 的形式,无论 a ( t ) a(t) a(t) 和 b ( t ) b(t) b(t) 如何选择。
当然,变量名称本身并没有什么神秘之处。例如,方程
d P d t = e 2 t P − sin t \frac{dP}{dt} = e^{2t}P - \sin t dtdP=e2tP−sint
是线性的,其中 a ( t ) = e 2 t a(t) = e^{2t} a(t)=e2t 和 b ( t ) = − sin t b(t) = -\sin t b(t)=−sint。此外,
d w d t = ( sin t ) w \frac{dw}{dt} = (\sin t)w dtdw=(sint)w
既是线性的( a ( t ) = sin t a(t) = \sin t a(t)=sint 和 b ( t ) = 0 b(t) = 0 b(t)=0),也是可分离的。然而,
d z d t = t sin z \frac{dz}{dt} = t \sin z dtdz=tsinz
不是线性的,但它是可分离的。
线性方程的附加术语
线性微分方程有两种类型。如果 b ( t ) = 0 b(t) = 0 b(t)=0 对所有 t t t 都成立,则该方程称为齐次方程或非强迫方程。否则,它称为非齐次方程或强迫方程。例如,
d y d t = ( sin 2 t ) y \frac{dy}{dt} = (\sin 2t)y dtdy=(sin2t)y
是齐次方程,而
d y d t = y + sin 2 t \frac{dy}{dt} = y + \sin 2t dtdy=y+sin2t
是非齐次方程。
如果 a ( t ) a(t) a(t) 是常数,则一阶线性微分方程称为常系数方程。换句话说,如果线性方程的形式为
d y d t = λ y + b ( t ) , \frac{dy}{dt} = \lambda y + b(t), dtdy=λy+b(t),
其中 λ \lambda λ 是常数,则该方程为常系数方程。
线性原理
线性微分方程因许多原因而重要。它们用于建模各种现象,如放射性元素的衰变、咖啡的冷却和溶液中化学品的混合。实际上,在我们开始建模过程时,几乎总是首先尝试线性模型。我们不仅希望模型尽可能简单,而且还希望利用线性方程解之间简单的关系。给定一个或两个非平凡解,我们可以通过使用适当的线性原理来获得其余的解。
齐次方程的线性原理
线性方程有两个线性原理,一个用于齐次方程,另一个用于非齐次方程。我们从齐次情况开始。
其次方程线性原理:如果 y h ( t ) y_h(t) yh(t) 是齐次线性方程
d y d t = a ( t ) y \frac{dy}{dt} = a(t)y dtdy=a(t)y
的解,则 y h ( t ) y_h(t) yh(t) 的任何常数倍也是该方程的解。即,对于任何常数 k k k, k y h ( t ) ky_h(t) kyh(t) 也是解。
我们可以通过检查 k y h ( t ) ky_h(t) kyh(t) 是否满足微分方程来验证这一原理。换句话说,如果 y h ( t ) y_h(t) yh(t) 是解,则
d y h d t = a ( t ) y h \frac{dy_h}{dt} = a(t)y_h dtdyh=a(t)yh
我们验证 k y h ( t ) ky_h(t) kyh(t) 是否也满足微分方程:
d ( k y h ) d t = k d y h d t = k a ( t ) y h = a ( t ) ( k y h ) . \frac{d(ky_h)}{dt} = k \frac{dy_h}{dt} = k a(t) y_h = a(t) (ky_h). dtd(kyh)=kdtdyh=ka(t)yh=a(t)(kyh).
因此,
k
y
h
(
t
)
ky_h(t)
kyh(t) 也满足原方程,证明了线性原理。
对于所有
t
t
t,如果
k
k
k 是常数,则有
d ( k y h ) d t = k d y h d t = k a ( t ) y h = a ( t ) ( k y h ) . \frac{d(ky_h)}{dt} = k \frac{dy_h}{dt} = k a(t) y_h = a(t) (k y_h). dtd(kyh)=kdtdyh=ka(t)yh=a(t)(kyh).
我们得出结论, k y h ( t ) ky_h(t) kyh(t) 也是微分方程 d y d t = a ( t ) y \frac{dy}{dt} = a(t)y dtdy=a(t)y 的解。
这个定理并不令人惊讶。齐次线性方程
d y d t = a ( t ) y \frac{dy}{dt} = a(t)y dtdy=a(t)y
是可分离的。分离变量得到
1 y d y = a ( t ) d t , \frac{1}{y} \, dy = a(t) \, dt, y1dy=a(t)dt,
积分左边得到 ln ∣ y ∣ + c = ∫ a ( t ) d t \ln |y| + c = \int a(t) \, dt ln∣y∣+c=∫a(t)dt,其中 c c c 是积分常数。对两边进行指数运算,去掉绝对值符号,并重新写出常数,得到
y ( t ) = k e ∫ a ( t ) d t , y(t) = ke^{\int a(t) \, dt}, y(t)=ke∫a(t)dt,
其中 k k k 是任意常数。从这个形式中,我们可以看到,非零解彼此之间是常数倍关系。(注意,所有 t t t 上的平衡解 y ( t ) = 0 y(t) = 0 y(t)=0 是每个齐次方程的解。)
例如,考虑齐次方程
d y d t = ( cos t ) y . \frac{dy}{dt} = (\cos t)y. dtdy=(cost)y.
所有解都是
y ( t ) = e ∫ cos t d t = e sin t . y(t) = e^{\int \cos t \, dt} = e^{\sin t}. y(t)=e∫costdt=esint.
换句话说,该方程的一般解是
y
(
t
)
=
k
e
sin
t
y(t) = ke^{\sin t}
y(t)=kesint,其中
k
k
k 是任意常数(见图 1.93)。
请记住,线性原理仅适用于齐次线性方程。例如,很容易检查
y
1
(
t
)
=
1
1
−
t
y_1(t) = \frac{1}{1 - t}
y1(t)=1−t1 是非线性方程
d y d t = y 2 \frac{dy}{dt} = y^2 dtdy=y2
的解,而 y 2 ( t ) = 2 y 1 ( t ) = 2 1 − t y_2(t) = 2y_1(t) = \frac{2}{1 - t} y2(t)=2y1(t)=1−t2 不是解(参见练习 17)。
非齐次情况
尽管线性原理不适用于非齐次线性方程(参见练习 18 和 34),但其解与其相关的齐次方程的解之间存在一个有趣的关系。
扩展线性原理
考虑非齐次方程
d y d t = a ( t ) y + b ( t ) \frac{dy}{dt} = a(t)y + b(t) dtdy=a(t)y+b(t)
及其相关的齐次方程
d y d t = a ( t ) y . \frac{dy}{dt} = a(t)y. dtdy=a(t)y.
- 如果 y h ( t ) y_h(t) yh(t) 是齐次方程的任意解, y p ( t ) y_p(t) yp(t) 是非齐次方程的任意解(“p” 代表特解),那么 y h ( t ) + y p ( t ) y_h(t) + y_p(t) yh(t)+yp(t) 也是非齐次方程的解。
- 假设 y p ( t ) y_p(t) yp(t) 和 y q ( t ) y_q(t) yq(t) 是非齐次方程的两个解。那么 y p ( t ) − y q ( t ) y_p(t) - y_q(t) yp(t)−yq(t) 是相关齐次方程的解。
因此,如果 y h ( t ) y_h(t) yh(t) 非零,那么 k y h ( t ) + y p ( t ) ky_h(t) + y_p(t) kyh(t)+yp(t) 是非齐次方程的一般解。
如果 k y h ( t ) ky_h(t) kyh(t) 是齐次方程的一般解,那么扩展线性原理的第一部分表明,对于任何常数 k k k 的值, k y h ( t ) + y p ( t ) ky_h(t) + y_p(t) kyh(t)+yp(t) 是非齐次方程的解。扩展线性原理的第二部分表明,任何非齐次方程的解 y q ( t ) y_q(t) yq(t) 可以表示为
k y h ( t ) + y p ( t ) ky_h(t) + y_p(t) kyh(t)+yp(t)
对于某个值的 k k k。因此, k y h ( t ) + y p ( t ) ky_h(t) + y_p(t) kyh(t)+yp(t) 是非齐次方程的一般解。我们常常总结这个观察结果为:
“非齐次方程的一般解是齐次方程的一般解与非齐次方程的一个解之和。”
例如,考虑非齐次方程
d y d t = ( cos t ) y + 1 5 ( 1 − t cos t ) . \frac{dy}{dt} = (\cos t)y + \frac{1}{5} (1 - t \cos t). dtdy=(cost)y+51(1−tcost).
我们已经看到其相关齐次方程
d y d t = ( cos t ) y \frac{dy}{dt} = (\cos t)y dtdy=(cost)y
的一般解是 y ( t ) = k e ∫ cos t d t y(t) = ke^{\int \cos t \, dt} y(t)=ke∫costdt,其中 k k k 是任意常数。还可以轻松验证 y p ( t ) = t 5 y_p(t) = \frac{t}{5} yp(t)=5t 是非齐次方程的一个解(参见练习 32)。
一旦我们得到了特解 y p ( t ) = t 5 y_p(t) = \frac{t}{5} yp(t)=5t,扩展线性原理告诉我们,非齐次方程的一般解是
y ( t ) = t 5 + k e ∫ cos t d t , y(t) = \frac{t}{5} + ke^{\int \cos t \, dt}, y(t)=5t+ke∫costdt,
其中 k k k 是任意常数(参见图 1.94)。
我们可以通过将这些函数代入微分方程来验证扩展线性原理,就像我们在本节前面验证线性原理时所做的那样(参见练习 33)。
解线性方程
我们现在有一个三步程序来解线性方程。首先,找到齐次方程的通解,如果需要的话,进行变量分离。然后,找到非齐次方程的一个“特解”。最后,通过将齐次方程的通解与非齐次方程的特解相加,得到非齐次方程的通解。
理论上,我们可以使用这个程序来解任何线性微分方程。然而,在实践中,这种技术仅用于特殊的线性方程,如常系数方程。限制在于第二步需要找到非齐次方程的特解。如果 a ( t ) a(t) a(t) 不是常数,这一步可能会很困难。如果 a ( t ) a(t) a(t) 是常数,我们有时可以使用一种古老的数学技巧来成功找到特解,即猜测。
幸运的猜测
例如,考虑非齐次线性方程
d y d t = − 2 y + e t . \frac{dy}{dt} = -2y + e^t. dtdy=−2y+et.
相关的齐次方程是 d y d t = − 2 y \frac{dy}{dt} = -2y dtdy=−2y,其通解为
y ( t ) = k e − 2 t . y(t) = ke^{-2t}. y(t)=ke−2t.
(你可以通过分离变量来解这个齐次方程,但它的通解现在应该是驾轻就熟的。参见第6页。)
猜测非齐次方程的解的最难部分是决定猜测什么,重新排列方程,使得所有涉及 y y y 的项都在方程的左侧,可以简化这个任务。换句话说,我们将方程重新写为
d y d t + 2 y = e t . \frac{dy}{dt} + 2y = e^t. dtdy+2y=et.
现在,我们需要猜测一个函数 y p ( t ) y_p(t) yp(t),使得当我们将 y p ( t ) y_p(t) yp(t) 代入方程的左侧时,右侧会得到 e t e^t et。我们可能不应该猜测正弦函数或余弦函数,因为计算后左侧仍会涉及三角函数。同样,多项式也不合适。我们需要猜测一个指数函数。猜测 y p ( t ) = e t y_p(t) = e^t yp(t)=et 似乎是一个自然的选择,因为它的导数也是 e t e^t et。不幸的是,当我们计算
d y p d t + 2 y p , \frac{d y_p}{dt} + 2 y_p, dtdyp+2yp,
我们得到 e t + 2 e t e^t + 2 e^t et+2et,这不等于 e t e^t et。虽然接近,但还是不对。
这个猜测 y p ( t ) = e t y_p(t) = e^t yp(t)=et 差点儿成功。我们只差一个常数因子 3。也许我们应该猜测 e t e^t et 的常数倍,实际上,可能应该让微分方程告诉我们这个常数应该是多少。换句话说,我们应该将猜测 y p ( t ) = e t y_p(t) = e^t yp(t)=et 替换为猜测 y p ( t ) = α e t y_p(t) = \alpha e^t yp(t)=αet,其中 α \alpha α 是稍后确定的常数。这种方法称为未定系数法:
我们必须确定系数 α \alpha α,使得 y p ( t ) = α e t y_p(t) = \alpha e^t yp(t)=αet 是非齐次方程的解。
从这个更灵活的猜测 y p ( t ) = α e t y_p(t) = \alpha e^t yp(t)=αet 开始,我们检查它是否有效。我们将 y p ( t ) y_p(t) yp(t) 代入 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y,得到
d y p d t + 2 y p = α e t + 2 α e t = 3 α e t . \frac{d y_p}{dt} + 2 y_p = \alpha e^t + 2 \alpha e^t = 3 \alpha e^t. dtdyp+2yp=αet+2αet=3αet.
为了使 y p ( t ) y_p(t) yp(t) 成为解, 3 α e t 3 \alpha e^t 3αet 必须等于 e t e^t et。也就是说, 3 α = 1 3 \alpha = 1 3α=1,这意味着 α = 1 3 \alpha = \frac{1}{3} α=31。因此,猜测 y p ( t ) = 1 3 e t y_p(t) = \frac{1}{3} e^t yp(t)=31et 是一个解,而方程 d y d t = − 2 y + e t \frac{dy}{dt} = -2y + e^t dtdy=−2y+et 的通解为
y ( t ) = k e − 2 t + 1 3 e t , y(t) = ke^{-2t} + \frac{1}{3} e^t, y(t)=ke−2t+31et,
其中 k k k 是任意常数。
另一个幸运的猜测
在之前的例子中,我们猜测了 y p ( t ) = α e t y_p(t) = \alpha e^t yp(t)=αet,因为方程是
d y d t + 2 y = b ( t ) , \frac{dy}{dt} + 2y = b(t), dtdy+2y=b(t),
其中 b ( t ) b(t) b(t) 是一个涉及 e t e^t et 的指数函数。现在,让我们考虑一个非齐次方程,其中 b ( t ) b(t) b(t) 是一个三角函数。例如,
d y d t + 2 y = cos 3 t . \frac{dy}{dt} + 2y = \cos 3t. dtdy+2y=cos3t.
在这种情况下,齐次方程的通解仍然是 y ( t ) = k e − 2 t y(t) = ke^{-2t} y(t)=ke−2t。但是,猜测一个指数函数对这个方程是不适用的。这一次我们尝试猜测
y p ( t ) = α cos 3 t + β sin 3 t . y_p(t) = \alpha \cos 3t + \beta \sin 3t. yp(t)=αcos3t+βsin3t.
注意,更简单的猜测如 y p ( t ) = α cos 3 t y_p(t) = \alpha \cos 3t yp(t)=αcos3t 和 y p ( t ) = α sin 3 t y_p(t) = \alpha \sin 3t yp(t)=αsin3t 注定会失败,因为我们在计算 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y 时会得到正弦和余弦的组合(参见练习13)。
为了确定 α \alpha α 和 β \beta β,我们将 y p ( t ) y_p(t) yp(t) 代入 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y 中,得到
d y p d t + 2 y p = d d t ( α cos 3 t + β sin 3 t ) + 2 ( α cos 3 t + β sin 3 t ) = − 3 α sin 3 t + 3 β cos 3 t + 2 α cos 3 t + 2 β sin 3 t = ( − 3 α + 2 β ) sin 3 t + ( 2 α + 3 β ) cos 3 t . \frac{d y_p}{dt} + 2 y_p = \frac{d}{dt} (\alpha \cos 3t + \beta \sin 3t) + 2 (\alpha \cos 3t + \beta \sin 3t) = -3 \alpha \sin 3t + 3 \beta \cos 3t + 2 \alpha \cos 3t + 2 \beta \sin 3t = (-3 \alpha + 2 \beta) \sin 3t + (2 \alpha + 3 \beta) \cos 3t. dtdyp+2yp=dtd(αcos3t+βsin3t)+2(αcos3t+βsin3t)=−3αsin3t+3βcos3t+2αcos3t+2βsin3t=(−3α+2β)sin3t+(2α+3β)cos3t.
为了使 y p ( t ) y_p(t) yp(t) 成为解,我们必须找到 α \alpha α 和 β \beta β 使得
( − 3 α + 2 β ) sin 3 t + ( 2 α + 3 β ) cos 3 t = cos 3 t (-3 \alpha + 2 \beta) \sin 3t + (2 \alpha + 3 \beta) \cos 3t = \cos 3t (−3α+2β)sin3t+(2α+3β)cos3t=cos3t
对于所有 t t t。为此,我们解这组代数方程:
{ − 3 α + 2 β = 0 2 α + 3 β = 1 \begin{cases} -3 \alpha + 2 \beta = 0 \\ 2 \alpha + 3 \beta = 1 \end{cases} {−3α+2β=02α+3β=1
得到 α = 2 13 \alpha = \frac{2}{13} α=132 和 β = 3 13 \beta = \frac{3}{13} β=133。因此,
y p ( t ) = 2 13 cos 3 t + 3 13 sin 3 t y_p(t) = \frac{2}{13} \cos 3t + \frac{3}{13} \sin 3t yp(t)=132cos3t+133sin3t
是非齐次方程的一个解。
因此,方程 d y d t + 2 y = cos 3 t \frac{dy}{dt} + 2y = \cos 3t dtdy+2y=cos3t 的通解是
y ( t ) = k e − 2 t + 2 13 cos 3 t + 3 13 sin 3 t , y(t) = ke^{-2t} + \frac{2}{13} \cos 3t + \frac{3}{13} \sin 3t, y(t)=ke−2t+132cos3t+133sin3t,
其中 k k k 是任意常数。不同初始条件下的解示例如图1.95所示。
你需要多幸运?
经过一段时间的练习,你会发现其实运气并没有那么重要。如果 b ( t ) b(t) b(t) 是由好函数(如正弦、余弦、指数函数等)组成的,你可以猜测一个由相同类型的函数构成的特解。如果你的猜测不合适(例如,在第二个例子中忘记了 β sin 3 t \beta \sin 3t βsin3t 项),那么很难找到使猜测成立的常数。如果发生这种情况,你只需根据你从之前的计算中学到的知识来修正原始猜测。
此外,你还应该小心避免一个常见的错误。在这个过程中,重要的是要记住未确定的常数在求导步骤中被视为常数。不要通过将 α \alpha α(或任何其他未确定的常数)强行转变为非恒定函数 α ( t ) \alpha(t) α(t) 来强迫错误形式的猜测在计算的最后一步中成立。
定性分析
前面的例子提供了对许多非齐次线性微分方程解的定性行为的深入理解。注意,齐次方程的通解 k e − 2 t ke^{-2t} ke−2t 会迅速趋向于零。因此,每个解最终都会接近特解
y p ( t ) = 2 13 cos 3 t + 3 13 sin 3 t . y_p(t) = \frac{2}{13} \cos 3t + \frac{3}{13} \sin 3t. yp(t)=132cos3t+133sin3t.
在图1.95中,我们可以清楚地看到,不同初始条件下的解都会趋向于同一个周期性函数。(这个周期性解被称为稳态解,因为所有解在长期内都会趋向于它。注意,这个稳态解以周期性的方式振荡,而不是像恒定解那样保持不变。)
我们可以在没有计算的情况下预测一些这种行为。如果我们查看该方程的斜率场(参见图1.96),我们会发现对于 y > 1 2 y > \frac{1}{2} y>21,斜率是负的,而对于 y < − 1 2 y < -\frac{1}{2} y<−21,斜率是正的。初始条件在区间 − 1 2 ≤ y ≤ 1 2 - \frac{1}{2} \leq y \leq \frac{1}{2} −21≤y≤21 外的解最终会进入由不等式 − 1 2 ≤ y ≤ 1 2 - \frac{1}{2} \leq y \leq \frac{1}{2} −21≤y≤21 确定的 t y ty ty 平面条带。虽然从斜率场中更难看出解在 t t t 轴附近的详细行为,但很明显解会以某种方式振荡。
再看通解
y ( t ) = k e − 2 t + 2 13 cos 3 t + 3 13 sin 3 t , y(t) = ke^{-2t} + \frac{2}{13} \cos 3t + \frac{3}{13} \sin 3t, y(t)=ke−2t+132cos3t+133sin3t,
我们可以看到,解的长期行为是一个周期为 2 π / 3 2\pi/3 2π/3 的振荡(参见图1.95)。注意,这个周期与 cos 3 t \cos 3t cos3t 的周期相同。然而,解的幅度和相位(即最大值和最小值的位置)与 cos 3 t \cos 3t cos3t 的幅度和相位并不完全相同。(我们在第4章详细研究线性方程解的幅度和相位。)
这些相同的思想适用于任何形如
d y d t = λ y + b ( t ) \frac{dy}{dt} = \lambda y + b(t) dtdy=λy+b(t)
的非齐次方程,只要 λ \lambda λ 是负的。与这个方程相关的齐次方程是
d y d t = λ y , \frac{dy}{dt} = \lambda y, dtdy=λy,
其通解为 k e λ t ke^{\lambda t} keλt。如果 λ < 0 \lambda < 0 λ<0,这些函数会以指数速度趋向于零。
如果非齐次方程的一个解是 y p ( t ) y_p(t) yp(t),那么非齐次方程的通解是
y ( t ) = k e λ t + y p ( t ) , y(t) = ke^{\lambda t} + y_p(t), y(t)=keλt+yp(t),
我们可以看到,所有解在 t t t 较大时都接近 y p ( t ) y_p(t) yp(t)。换句话说,方程的齐次部分的解会趋向于零,而所有解在长期内会融合到 y p ( t ) y_p(t) yp(t)。
所有解随时间收敛的事实确实依赖于 λ \lambda λ 是负的。如果 λ ≥ 0 \lambda \geq 0 λ≥0,则可能出现非常不同的行为(参见练习25–28)。
再次猜测
有时候,我们的第一次猜测可能无论多么合理也不起作用。如果发生这种情况,我们只需重新猜测。
考虑方程
d y d t = − 2 y + 3 e − 2 t . \frac{dy}{dt} = -2y + 3e^{-2t}. dtdy=−2y+3e−2t.
为了计算通解,我们首先注意到齐次方程的通解是 y ( t ) = k e − 2 t y(t) = ke^{-2t} y(t)=ke−2t。为了找到非齐次方程的一个特解,我们将方程重写为
d y d t + 2 y = 3 e − 2 t \frac{dy}{dt} + 2y = 3e^{-2t} dtdy+2y=3e−2t
并猜测 y p ( t ) = α e − 2 t y_p(t) = \alpha e^{-2t} yp(t)=αe−2t,其中 α \alpha α 是待定系数。将这个猜测代入 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y,我们得到
d y p d t + 2 y p = d ( α e − 2 t ) d t + 2 α e − 2 t = − 2 α e − 2 t + 2 α e − 2 t = 0. \frac{d y_p}{dt} + 2y_p = \frac{d(\alpha e^{-2t})}{dt} + 2\alpha e^{-2t} = -2\alpha e^{-2t} + 2\alpha e^{-2t} = 0. dtdyp+2yp=dtd(αe−2t)+2αe−2t=−2αe−2t+2αe−2t=0.
这让人沮丧。不管我们选择什么值的 α \alpha α,将 y p ( t ) = α e − 2 t y_p(t) = \alpha e^{-2t} yp(t)=αe−2t 代入 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y 总是得到零。非齐次方程的解不能是 y p ( t ) = α e − 2 t y_p(t) = \alpha e^{-2t} yp(t)=αe−2t 的形式。我们的猜测失败了,因为 $ \alpha e^{-2t}$ 是相关的齐次方程的解。当我们将 y p ( t ) = α e − 2 t y_p(t) = \alpha e^{-2t} yp(t)=αe−2t 代入 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y 时,我们一定会得到零。
为了能够成为解,我们的猜测必须包含一个 e − 2 t e^{-2t} e−2t 的因子。不幸的是,可能的选择范围很广。我们需要一个包含 e − 2 t e^{-2t} e−2t 项、不是齐次方程的解,并且尽可能简单的第二次猜测。形式为 α e − 2 t sin t \alpha e^{-2t} \sin t αe−2tsint 或 α e b t \alpha e^{bt} αebt 的猜测显然注定会失败。我们需要一个其导数包含一个与自身相同的项和另一个涉及 e − 2 t e^{-2t} e−2t 的项的猜测。积的法则建议使用 t t t 乘以我们第一次的猜测,因此我们尝试
y p ( t ) = α t e − 2 t , y_p(t) = \alpha t e^{-2t}, yp(t)=αte−2t,
其中 α \alpha α 是我们待定的系数。 y p ( t ) y_p(t) yp(t) 的导数是 α ( 1 − 2 t ) e − 2 t \alpha (1 - 2t)e^{-2t} α(1−2t)e−2t,将这个导数代入 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y,我们得到
d y p d t + 2 y p = α ( 1 − 2 t ) e − 2 t + 2 α t e − 2 t = α e − 2 t . \frac{d y_p}{dt} + 2y_p = \alpha (1 - 2t)e^{-2t} + 2\alpha t e^{-2t} = \alpha e^{-2t}. dtdyp+2yp=α(1−2t)e−2t+2αte−2t=αe−2t.
由于我们希望 d y d t + 2 y \frac{dy}{dt} + 2y dtdy+2y 等于 3 e − 2 t 3e^{-2t} 3e−2t,猜测 y p ( t ) = α t e − 2 t y_p(t) = \alpha t e^{-2t} yp(t)=αte−2t 是一个解当且仅当 α = 3 \alpha = 3 α=3。 (这个计算说明了为什么将第一次猜测乘以 t t t 是一个好主意。) 这个非齐次方程的通解是
y ( t ) = k e − 2 t + 3 t e − 2 t , y(t) = ke^{-2t} + 3t e^{-2t}, y(t)=ke−2t+3te−2t,
其中 k k k 是任意常数。
重新猜测的经验法则
最后一个例子表明了猜测技巧的不满之处。我们是如何知道将第二次猜测设为 t t t 乘以第一次猜测的形式呢?答案是我们可能以前见过类似的问题,或者我们可以通过其他技巧至少推测出猜测的形式。关于如何通过减少猜测但增加计算来得到第二次猜测的方法,可以参考第1.9节的第23题、第6章以及附录B中的第17和18题。