微分方程(Blanchard Differential Equations 4th)中文版Section1.8

线性方程

在第1.2节中,我们发展了一种分析方法,用于寻找可分离微分方程的显式解。尽管许多有趣的问题会导致可分离方程,但大多数微分方程并不是可分离的。我们在第1.3至第1.6节中发展出的定性和数值技术适用于更广泛的问题。如果我们能通过发展方法来找到不可分离方程的显式解,那将是很好的。

不幸的是,目前没有一种通用的技术能够计算出适用于所有微分方程的显式解。虽然我们知道根据存在定理,每一个合理的微分方程都有解,但我们无法保证这些解由熟悉的函数(如多项式、正弦、余弦和指数函数)构成。实际上,它们通常并不是。几个世纪以来,数学家们通过发展各种专门的技术来处理这个难题。这些技术今天作为一行命令在像Maple和Mathematica这样的高级计算软件中可供使用。

尽管如此,你应该熟悉几种适用于最常见类型方程的标准分析技术。在本节和第1.9节中,我们将介绍两种解决最重要类型微分方程——线性微分方程的标准技术。

线性微分方程

一阶微分方程是线性的,如果它可以写成以下形式:

d y d t = a ( t ) y + b ( t ) , \frac{dy}{dt} = a(t)y + b(t), dtdy=a(t)y+b(t),

其中 a ( t ) a(t) a(t) b ( t ) b(t) b(t) t t t 的任意函数。线性方程的例子包括:

d y d t = t 2 y + cos ⁡ t , \frac{dy}{dt} = t^2 y + \cos t, dtdy=t2y+cost,

其中 a ( t ) = t 2 a(t) = t^2 a(t)=t2 b ( t ) = cos ⁡ t b(t) = \cos t b(t)=cost;以及

d y d t = e 4 sin ⁡ t t 3 + 7 t y + 23 t 3 − 7 t 2 + 3 , \frac{dy}{dt} = \frac{e^4 \sin t}{t^3 + 7t} y + 23t^3 - 7t^2 + 3, dtdy=t3+7te4sinty+23t37t2+3,

其中 a ( t ) = e 4 sin ⁡ t t 3 + 7 t a(t) = \frac{e^4 \sin t}{t^3 + 7t} a(t)=t3+7te4sint b ( t ) = 23 t 3 − 7 t 2 + 3 b(t) = 23t^3 - 7t^2 + 3 b(t)=23t37t2+3

有时,需要做一点代数运算才能看出一个方程是否线性。例如,微分方程

d y d t − 3 y = t y + 2 \frac{dy}{dt} - 3y = ty + 2 dtdy3y=ty+2

可以重写为

d y d t = ( t + 3 ) y + 2. \frac{dy}{dt} = (t + 3)y + 2. dtdy=(t+3)y+2.

在这种形式下,我们可以看到方程是线性的,且 a ( t ) = t + 3 a(t) = t + 3 a(t)=t+3 b ( t ) = 2 b(t) = 2 b(t)=2

一些微分方程符合多个类别。例如,方程

d y d t = 2 y + 8 \frac{dy}{dt} = 2y + 8 dtdy=2y+8

是线性的,其中 a ( t ) = 2 a(t) = 2 a(t)=2 b ( t ) = 8 b(t) = 8 b(t)=8(两者都是常数函数)。它也是自变量的,因此也是可分离的。

“线性”一词指的是因变量 y y y 在方程中只出现一次幂。微分方程

d y d t = y 2 \frac{dy}{dt} = y^2 dtdy=y2

不是线性的,因为 y 2 y^2 y2 无法重写成形式为 a ( t ) y + b ( t ) a(t)y + b(t) a(t)y+b(t) 的形式,无论 a ( t ) a(t) a(t) b ( t ) b(t) b(t) 如何选择。

当然,变量名称本身并没有什么神秘之处。例如,方程

d P d t = e 2 t P − sin ⁡ t \frac{dP}{dt} = e^{2t}P - \sin t dtdP=e2tPsint

是线性的,其中 a ( t ) = e 2 t a(t) = e^{2t} a(t)=e2t b ( t ) = − sin ⁡ t b(t) = -\sin t b(t)=sint。此外,

d w d t = ( sin ⁡ t ) w \frac{dw}{dt} = (\sin t)w dtdw=(sint)w

既是线性的( a ( t ) = sin ⁡ t a(t) = \sin t a(t)=sint b ( t ) = 0 b(t) = 0 b(t)=0),也是可分离的。然而,

d z d t = t sin ⁡ z \frac{dz}{dt} = t \sin z dtdz=tsinz

不是线性的,但它是可分离的。

线性方程的附加术语

线性微分方程有两种类型。如果 b ( t ) = 0 b(t) = 0 b(t)=0 对所有 t t t 都成立,则该方程称为齐次方程非强迫方程。否则,它称为非齐次方程强迫方程。例如,

d y d t = ( sin ⁡ 2 t ) y \frac{dy}{dt} = (\sin 2t)y dtdy=(sin2t)y

是齐次方程,而

d y d t = y + sin ⁡ 2 t \frac{dy}{dt} = y + \sin 2t dtdy=y+sin2t

是非齐次方程。

如果 a ( t ) a(t) a(t) 是常数,则一阶线性微分方程称为常系数方程。换句话说,如果线性方程的形式为

d y d t = λ y + b ( t ) , \frac{dy}{dt} = \lambda y + b(t), dtdy=λy+b(t),

其中 λ \lambda λ 是常数,则该方程为常系数方程。

线性原理

线性微分方程因许多原因而重要。它们用于建模各种现象,如放射性元素的衰变、咖啡的冷却和溶液中化学品的混合。实际上,在我们开始建模过程时,几乎总是首先尝试线性模型。我们不仅希望模型尽可能简单,而且还希望利用线性方程解之间简单的关系。给定一个或两个非平凡解,我们可以通过使用适当的线性原理来获得其余的解。

齐次方程的线性原理

线性方程有两个线性原理,一个用于齐次方程,另一个用于非齐次方程。我们从齐次情况开始。

其次方程线性原理:如果 y h ( t ) y_h(t) yh(t) 是齐次线性方程

d y d t = a ( t ) y \frac{dy}{dt} = a(t)y dtdy=a(t)y

的解,则 y h ( t ) y_h(t) yh(t) 的任何常数倍也是该方程的解。即,对于任何常数 k k k k y h ( t ) ky_h(t) kyh(t) 也是解。

我们可以通过检查 k y h ( t ) ky_h(t) kyh(t) 是否满足微分方程来验证这一原理。换句话说,如果 y h ( t ) y_h(t) yh(t) 是解,则

d y h d t = a ( t ) y h \frac{dy_h}{dt} = a(t)y_h dtdyh=a(t)yh

我们验证 k y h ( t ) ky_h(t) kyh(t) 是否也满足微分方程:

d ( k y h ) d t = k d y h d t = k a ( t ) y h = a ( t ) ( k y h ) . \frac{d(ky_h)}{dt} = k \frac{dy_h}{dt} = k a(t) y_h = a(t) (ky_h). dtd(kyh)=

  • 16
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值