【无人机】【2017】基于无人机的优化终端交付

在这里插入图片描述

本文为美国明尼苏达州立大学(作者:Fuad Gazal)的硕士论文,共112页。

无人机(UAV)是一种遥控飞行器,有着广泛的应用。尽管无人机早期的应用主要集中在军事上,但监视、摄影和农业应用目前正在兴起。这项工作的目的是确定如何使用无人机来减少运输时间、提高动力效率和提高安全性,最终实现优化的终端交付。综合运用数学模型、无人机模拟、冗余控制系统和定制设计的电气、机械部件等工具和技术,实现了在30分钟内运输10英里、最大有效载荷10公斤的目标。开发了两个无人机原型,其中第二个(V2)显示出很有希望的结果。在V2中实现的速度,再加上多功能的有效载荷连接器和适当的网络,使得在一个大都市内5-10英里的货物交付不低于8公斤,所用时间少于30分钟。

Unmanned Aerial Vehicles (UAVs) areremotely piloted aircraft with a range of varying applications. Though earlyadoption of UAVs focused on military applications, surveillance, photography,and agricultural applications are presently on the rise. This work aims toascertain how UAVs may be employed to elicit deceased transportation times,increased power efficiency, and improved safety. Resulting in optimized endpoint delivery. A combination of tools and techniques, involving a mathematicalmodel, UAV simulations, redundant control systems, and custom designedelectrical and mechanical components were used towards reaching the goal of a10-kilogram maximum payload delivered 10 miles under 30 minutes. Two UAVprototypes were developed, the second of which (V2) showed promising results.Velocities achieved in V2, in combination with a versatile payload connectorand proper networking, allowed for 5-10 mile deliveries of goods less than8-kilograms to be achieved within a metropolis faster than the 30- minutebenchmark.

  1. 引言
  2. 项目背景
  3. 数学模型
  4. MATLAB-Simulink的控制建模与仿真
  5. 系统原型的实现
  6. 挑战、结果与分析
  7. 结论

更多精彩文章请关注公众号:在这里插入图片描述

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值