极值问题
非条件极值
条件极值
重积分
重积分的变量代换
柱面坐标代换
{
x
=
r
cos
(
θ
)
y
=
r
sin
(
θ
)
z
=
z
\left\{ \begin{aligned} x & = & r\cos(\theta) \\ y & = & r\sin(\theta) \\ z & = & z \end{aligned} \right.
⎩⎪⎨⎪⎧xyz===rcos(θ)rsin(θ)z
球面坐标代换
{
x
=
r
sin
(
φ
)
cos
(
θ
)
y
=
r
sin
(
φ
)
sin
(
θ
)
z
=
r
cos
(
φ
)
\left\{ \begin{aligned} x & = & r\sin(\varphi)\cos(\theta) \\ y & = & r\sin(\varphi)\sin(\theta) \\ z & = & r\cos(\varphi) \end{aligned} \right.
⎩⎪⎨⎪⎧xyz===rsin(φ)cos(θ)rsin(φ)sin(θ)rcos(φ)
反常重积分
Poisson积分:
∫
0
∞
e
−
x
2
d
x
=
π
2
\int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}
∫0∞e−x2dx=2π
利用
∬
R
2
e
−
(
x
2
+
y
2
)
d
x
d
y
\iint_{R^2}e^{-(x^{2}+y^{2})}dxdy
∬R2e−(x2+y2)dxdy
曲面积分
第一类曲线积分和第二类曲线积分
第二类曲面积分和第二类曲面积分
Green公式
∫ α D P d x + Q d y = ∬ D ( α Q α x − α P α y ) d x d y \int_{\alpha D}Pdx+Qdy=\iint_{D} (\frac{\alpha Q}{\alpha x}-\frac{\alpha P}{\alpha y})dxdy ∫αDPdx+Qdy=∬D(αxαQ−αyαP)dxdy
Gauss公式
∭ Ω ( α P α x + α Q α y + α R α z ) d x d y d z \iiint_{\Omega} (\frac{\alpha P}{\alpha x}+\frac{\alpha Q}{\alpha y}+\frac{\alpha R}{\alpha z})dxdydz ∭Ω(αxαP+αyαQ+αzαR)dxdydz
Stokes公式
含参变量积分
含参变量常义积分
I
(
y
)
=
∫
a
b
f
(
x
,
y
)
d
x
y
∈
[
c
,
d
]
I(y)=\int_{a}^{b}f(x,y)dx \quad y\in[c,d]
I(y)=∫abf(x,y)dxy∈[c,d]
积分次序交换顺序
∫
c
d
d
y
∫
a
b
f
(
x
,
y
)
d
x
=
∫
a
b
d
x
∫
c
d
f
(
x
,
y
)
d
y
\int_{c}^{d}dy\int_{a}^{b}f(x,y)dx=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy
∫cddy∫abf(x,y)dx=∫abdx∫cdf(x,y)dy
习题:
(1)
I
=
∫
0
1
x
b
−
x
a
l
n
x
d
x
,
b
>
a
>
0
I=\int_{0}^{1}\frac{x^{b}-x^a}{lnx}dx,b>a>0
I=∫01lnxxb−xadx,b>a>0
(
∫
a
b
x
y
d
y
=
x
b
−
x
a
l
n
x
\int_{a}^{b}x^{y}dy=\frac{x^{b}-x^a}{lnx}
∫abxydy=lnxxb−xa)
∫
0
1
d
x
∫
a
b
x
y
d
y
=
∫
a
b
d
y
∫
0
1
x
y
d
x
\int_{0}^{1}dx\int_{a}^{b}x^{y}dy=\int_{a}^{b}dy\int_{0}^{1}x^{y}dx
∫01dx∫abxydy=∫abdy∫01xydx(展开\textcolor{brown}{
x
y
x^{y}
xy})=
∫
a
b
1
1
+
y
d
y
=
l
n
(
1
+
b
)
l
n
(
1
+
a
)
\int_{a}^{b}\frac{1}{1+y}dy=\frac{ln(1+b)}{ln(1+a)}
∫ab1+y1dy=ln(1+a)ln(1+b)
(2)
含参变量反常积分
Fourier 级数
函数的Fourier级数的展开
我们探讨这样一个问题:
假设
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
k
c
o
s
k
t
+
b
k
s
i
n
k
t
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt
f(x)=2a0+∑n=1∞akcoskt+bksinkt
a
0
=
a_{0}=
a0=
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
n
x
d
x
,
n
=
0
,
1
,
2
,
⋯
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x, \quad n=0,1,2, \cdots
an=π1∫−ππf(x)cosnxdx,n=0,1,2,⋯
b
n
=
1
π
∫
−
x
π
f
(
x
)
sin
n
x
d
x
,
n
=
1
,
2
,
⋯
b_{n}=\frac{1}{\pi} \int_{-x}^{\pi} f(x) \sin n x \mathrm{d} x, \quad n=1,2, \cdots
bn=π1∫−xπf(x)sinnxdx,n=1,2,⋯
我们称为Euler–Fourier公式