数学分析总结

极值问题

非条件极值

条件极值

重积分

重积分的变量代换

柱面坐标代换
{ x = r cos ⁡ ( θ ) y = r sin ⁡ ( θ ) z = z \left\{ \begin{aligned} x & = & r\cos(\theta) \\ y & = & r\sin(\theta) \\ z & = & z \end{aligned} \right. xyz===rcos(θ)rsin(θ)z
球面坐标代换
{ x = r sin ⁡ ( φ ) cos ⁡ ( θ ) y = r sin ⁡ ( φ ) sin ⁡ ( θ ) z = r cos ⁡ ( φ ) \left\{ \begin{aligned} x & = & r\sin(\varphi)\cos(\theta) \\ y & = & r\sin(\varphi)\sin(\theta) \\ z & = & r\cos(\varphi) \end{aligned} \right. xyz===rsin(φ)cos(θ)rsin(φ)sin(θ)rcos(φ)

反常重积分

Poisson积分:
∫ 0 ∞ e − x 2 d x = π 2 \int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} 0ex2dx=2π
利用 ∬ R 2 e − ( x 2 + y 2 ) d x d y \iint_{R^2}e^{-(x^{2}+y^{2})}dxdy R2e(x2+y2)dxdy

曲面积分

第一类曲线积分和第二类曲线积分

第二类曲面积分和第二类曲面积分

Green公式

∫ α D P d x + Q d y = ∬ D ( α Q α x − α P α y ) d x d y \int_{\alpha D}Pdx+Qdy=\iint_{D} (\frac{\alpha Q}{\alpha x}-\frac{\alpha P}{\alpha y})dxdy αDPdx+Qdy=D(αxαQαyαP)dxdy

Gauss公式

∭ Ω ( α P α x + α Q α y + α R α z ) d x d y d z \iiint_{\Omega} (\frac{\alpha P}{\alpha x}+\frac{\alpha Q}{\alpha y}+\frac{\alpha R}{\alpha z})dxdydz Ω(αxαP+αyαQ+αzαR)dxdydz

Stokes公式

含参变量积分

含参变量常义积分

I ( y ) = ∫ a b f ( x , y ) d x y ∈ [ c , d ] I(y)=\int_{a}^{b}f(x,y)dx \quad y\in[c,d] I(y)=abf(x,y)dxy[c,d]
积分次序交换顺序 ∫ c d d y ∫ a b f ( x , y ) d x = ∫ a b d x ∫ c d f ( x , y ) d y \int_{c}^{d}dy\int_{a}^{b}f(x,y)dx=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy cddyabf(x,y)dx=abdxcdf(x,y)dy
习题:
(1) I = ∫ 0 1 x b − x a l n x d x , b > a > 0 I=\int_{0}^{1}\frac{x^{b}-x^a}{lnx}dx,b>a>0 I=01lnxxbxadx,b>a>0
( ∫ a b x y d y = x b − x a l n x \int_{a}^{b}x^{y}dy=\frac{x^{b}-x^a}{lnx} abxydy=lnxxbxa)
∫ 0 1 d x ∫ a b x y d y = ∫ a b d y ∫ 0 1 x y d x \int_{0}^{1}dx\int_{a}^{b}x^{y}dy=\int_{a}^{b}dy\int_{0}^{1}x^{y}dx 01dxabxydy=abdy01xydx(展开\textcolor{brown}{ x y x^{y} xy})= ∫ a b 1 1 + y d y = l n ( 1 + b ) l n ( 1 + a ) \int_{a}^{b}\frac{1}{1+y}dy=\frac{ln(1+b)}{ln(1+a)} ab1+y1dy=ln(1+a)ln(1+b)
(2)
含参变量反常积分

Fourier 级数

函数的Fourier级数的展开

我们探讨这样一个问题:
假设 f ( x ) = a 0 2 + ∑ n = 1 ∞ a k c o s k t + b k s i n k t f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt f(x)=2a0+n=1akcoskt+bksinkt
a 0 = a_{0}= a0=
a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , n = 0 , 1 , 2 , ⋯ a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x, \quad n=0,1,2, \cdots an=π1ππf(x)cosnxdx,n=0,1,2,
b n = 1 π ∫ − x π f ( x ) sin ⁡ n x d x , n = 1 , 2 , ⋯ b_{n}=\frac{1}{\pi} \int_{-x}^{\pi} f(x) \sin n x \mathrm{d} x, \quad n=1,2, \cdots bn=π1xπf(x)sinnxdx,n=1,2,
我们称为Euler–Fourier公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值