群的作用

群的作用

G为一个群, G ≠ ∅ G \neq \varnothing G=

φ : G × S → S \varphi:G \times S \rightarrow S φ:G×SS

( i ) : g 1 g 2 ( s ) = g 1 ( g 2 ( s ) ) (i):g_1 g_{2}(s)=g_1(g_2(s)) (i):g1g2(s)=g1(g2(s))

( i i ) : e ( s ) = s , ∀ s ∈ S (ii):e(s)=s ,\forall s \in S (ii):e(s)=s,sS

我们引入轨道的概念: O x = { g x ∣ g ∈ G } O_{x}=\{gx|g\in G\} Ox={gxgG}

我们来证明: ∀ x , y , O x = O y \forall x,y,O_x=O_y x,y,Ox=Oy或者不相等(即不可能会出现相交的情况)

O x ∩ O y ≠ ∅ O_x \cap O_y \neq \varnothing OxOy=

任取 z ∈ O x ∩ O y z \in O_x \cap O_y zOxOy,存在 g 1 , g 2 ∈ G g_1,g_2 \in G g1,g2G,使得 g x = z = g y gx=z=gy gx=z=gy

y = g 2 − 1 g 1 x ∈ O x y=g_2^{-1}g_1x \in O_x y=g21g1xOx(这里我们要注意一些概念: O x = { g x ∣ ∀ g ∈ G } O_{x}=\{gx|\forall g\in G\} Ox={gxgG})由此得到: O y ⊂ O x , 同 理 可 证 O x ⊂ O y → O x = O y O_y \subset O_x,同理可证O_x \subset O_y \rightarrow O_x =O_y OyOx,OxOyOx=Oy

由于 O x = { g x ∣ ∀ g ∈ G } O_{x}=\{gx|\forall g\in G\} Ox={gxgG}

这里我们注意一个事实,尽管 ρ \rho ρ是一个双射,但是群的阶数与集合的阶数不相等。

这是需要我们格外注意的地方:因为我们经常认为群作用了的话,本身就应该与映射出来的集合是一样的,即: ∣ g ( x ) ∣ = X |g(x)|=X g(x)=X,而不是 ∣ G ∣ = ∣ X ∣ |G|=|X| G=X

我们来看个例子,首先我们必须明白一点群的作用只是个抽象的作用,并不是群真实的作用在集合上,这只是一个称呼。

我们定义 φ : g ( x ) = g x g − 1 , ∀ g ∈ G \varphi:g(x)=gxg^{-1},\forall g \in G φ:g(x)=gxg1,gG

我们有这样的事实:

( i ) e ( x ) = e x e − 1 (i)e(x)=exe^{-1} (i)e(x)=exe1

( i i ) g 1 ( g 2 ( x ) ) = g 1 ( g 2 x g 2 − 1 ) g 1 − 1 = g 1 g 2 x ( g 1 g 2 ) − 1 (ii)g_1(g_2(x))=g_1(g_2xg_2^{-1})g_1^{-1}=g_1g_2x(g_1g_2)^{-1} (ii)g1(g2(x))=g1(g2xg21)g11=g1g2x(g1g2)1

我们很容易提出问题: ∣ G ∣ ? = ∣ O x ∣ ? = ∣ G × X ∣ |G|?=|O_x|?=|G \times X| G?=Ox=G×X

??我们注意一件事情,如果G为交换群,则 g ( s ) = g 1 g 2 ( s ) = g 2 ( g 1 ( s ) ) g(s)=g_1g_2(s)=g_2(g_1(s)) g(s)=g1g2(s)=g2(g1(s))

我们首先要注意事实: ∣ G ∣ |G| G ∣ O x ∣ |O_x| Ox在大多时候的阶数是不一样的

我们先来看看轨道稳定子定理:

我们定义稳定子: S x = { g x = x } S_x=\{gx=x\} Sx={gx=x}

那么有这样的事实: ρ : O x → G / S x \rho: O_x \rightarrow G \big/S_x ρ:OxG/Sx

g x → g S x gx \rightarrow gS_x gxgSx

那么我们 O x O_x Ox G / S x G \big/ S_x G/Sx的一一映射

这个是很有意思的事情,一般不容易发现,这样我们就定义 ∣ G ∣ |G| G ∣ O x ∣ |O_x| Ox的关系

我们先来证明轨道稳定子定理:

( i ) ρ 为 单 射 : ρ ( g 1 x ) = ρ ( g 2 x ) → g 1 S x = g 2 S x , g 1 − 1 g 2 S x = S x (i)\rho 为单射:\rho(g_1 x)=\rho(g_2x)\rightarrow g_1S_x=g_2S_x,g_1^{-1}g_2S_x=S_x (i)ρρ(g1x)=ρ(g2x)g1Sx=g2Sx,g11g2Sx=Sx

g 1 − 1 g 2 ∈ S x , g 1 − 1 g 2 x = x g_1^{-1}g_2 \in S_x,g_1^{-1}g_2x=x g11g2Sx,g11g2x=x

我们得到了很重要的结论: ∣ G ∣ = ∣ S x ∣ ∣ O x ∣ |G|=|S_x||O_x| G=SxOx

我们来看看一个群作用:

多项式: x 1 x 2 + x 2 x 3 + x 3 x 4 + x 4 x 1 x_1x_2+x_2x_3+x_3x_4+x_4x_1 x1x2+x2x3+x3x4+x4x1的对称变换的群

X = { x 1 , x 2 , x 3 , x 4 } X=\{x_1,x_2,x_3,x_4\} X={x1,x2,x3,x4},G作用在X上, τ = ( 1 , 2 , 3 , 4 ) \tau=(1,2,3,4) τ=(1,2,3,4)

!!我们要注意这个事实,我们每次的群作用都是利用在X里面去一个元素来完成,所以我们如果要来衡量 ∣ X ∣ |X| X的阶数,

∣ X ∣ = ∑ i = 1 t [ G : S x i ] |X|=\sum_{i=1}^{t}[G:S_{x_i}] X=i=1t[G:Sxi],其中 x i x_i xi取遍不同轨道的代表元素

我们注意一个很有意思的现象,因为群本身的定义是集合,然后有规定的运算,我们可以定义群作用于群本身的集合,

G × G → G G \times G \rightarrow G G×GG,我们这里不采用抽象的定义,即映射的方式: g 1 ( g 2 ) → g g_1(g_2) \rightarrow g g1(g2)g,这里我们采用共轭作用,群 G G G作用在自身

x ∈ G , O x = { g x g − 1 ∣ g ∈ G } , S x = { g ∈ G ∣ g x g − 1 = x } x \in G,O_x=\{gxg^{-1}|g \in G\},S_x=\{g \in G|gxg^{-1}=x\} xG,Ox={gxg1gG},Sx={gGgxg1=x}

我们通常把 O x O_x Ox称为x所在的共轭类, S x S_x Sx称为中心化子

所以我们得到了一个重要的定理:

∣ G ∣ = ∑ x ∣ G : C ( x ) ∣ |G|=\sum_{x}|G:C(x)| G=xG:C(x),我们对这个等式进行整理,把x为中心元素的共轭类的代表元都弄出来,

∣ G : C ( x ) ∣ = 1 |G:C(x)|=1 G:C(x)=1(x为中心元素的共轭类)

G G G为有限群, ∣ G ∣ = ∣ C ( G ) ∣ + ∑ x ∣ G : C ( x ) ∣ |G|=|C(G)|+\sum_{x}|G:C(x)| G=C(G)+xG:C(x)

(x为取遍非中心元素的共轭类的代表元)

推论:Cauchy定理:如果 G G G为一个有限群, ∣ G ∣ = n |G|=n G=n,对于n每一个素因子p, G G G都有阶为p的元素

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值