群的作用
G为一个群, G ≠ ∅ G \neq \varnothing G=∅
φ : G × S → S \varphi:G \times S \rightarrow S φ:G×S→S
( i ) : g 1 g 2 ( s ) = g 1 ( g 2 ( s ) ) (i):g_1 g_{2}(s)=g_1(g_2(s)) (i):g1g2(s)=g1(g2(s))
( i i ) : e ( s ) = s , ∀ s ∈ S (ii):e(s)=s ,\forall s \in S (ii):e(s)=s,∀s∈S
我们引入轨道的概念: O x = { g x ∣ g ∈ G } O_{x}=\{gx|g\in G\} Ox={gx∣g∈G}
我们来证明: ∀ x , y , O x = O y \forall x,y,O_x=O_y ∀x,y,Ox=Oy或者不相等(即不可能会出现相交的情况)
O x ∩ O y ≠ ∅ O_x \cap O_y \neq \varnothing Ox∩Oy=∅
任取 z ∈ O x ∩ O y z \in O_x \cap O_y z∈Ox∩Oy,存在 g 1 , g 2 ∈ G g_1,g_2 \in G g1,g2∈G,使得 g x = z = g y gx=z=gy gx=z=gy
y = g 2 − 1 g 1 x ∈ O x y=g_2^{-1}g_1x \in O_x y=g2−1g1x∈Ox(这里我们要注意一些概念: O x = { g x ∣ ∀ g ∈ G } O_{x}=\{gx|\forall g\in G\} Ox={gx∣∀g∈G})由此得到: O y ⊂ O x , 同 理 可 证 O x ⊂ O y → O x = O y O_y \subset O_x,同理可证O_x \subset O_y \rightarrow O_x =O_y Oy⊂Ox,同理可证Ox⊂Oy→Ox=Oy
由于 O x = { g x ∣ ∀ g ∈ G } O_{x}=\{gx|\forall g\in G\} Ox={gx∣∀g∈G}
这里我们注意一个事实,尽管 ρ \rho ρ是一个双射,但是群的阶数与集合的阶数不相等。
这是需要我们格外注意的地方:因为我们经常认为群作用了的话,本身就应该与映射出来的集合是一样的,即: ∣ g ( x ) ∣ = X |g(x)|=X ∣g(x)∣=X,而不是 ∣ G ∣ = ∣ X ∣ |G|=|X| ∣G∣=∣X∣
我们来看个例子,首先我们必须明白一点群的作用只是个抽象的作用,并不是群真实的作用在集合上,这只是一个称呼。
我们定义 φ : g ( x ) = g x g − 1 , ∀ g ∈ G \varphi:g(x)=gxg^{-1},\forall g \in G φ:g(x)=gxg−1,∀g∈G
我们有这样的事实:
( i ) e ( x ) = e x e − 1 (i)e(x)=exe^{-1} (i)e(x)=exe−1
( i i ) g 1 ( g 2 ( x ) ) = g 1 ( g 2 x g 2 − 1 ) g 1 − 1 = g 1 g 2 x ( g 1 g 2 ) − 1 (ii)g_1(g_2(x))=g_1(g_2xg_2^{-1})g_1^{-1}=g_1g_2x(g_1g_2)^{-1} (ii)g1(g2(x))=g1(g2xg2−1)g1−1=g1g2x(g1g2)−1
我们很容易提出问题: ∣ G ∣ ? = ∣ O x ∣ ? = ∣ G × X ∣ |G|?=|O_x|?=|G \times X| ∣G∣?=∣Ox∣?=∣G×X∣
??我们注意一件事情,如果G为交换群,则 g ( s ) = g 1 g 2 ( s ) = g 2 ( g 1 ( s ) ) g(s)=g_1g_2(s)=g_2(g_1(s)) g(s)=g1g2(s)=g2(g1(s))
我们首先要注意事实: ∣ G ∣ |G| ∣G∣和 ∣ O x ∣ |O_x| ∣Ox∣在大多时候的阶数是不一样的
我们先来看看轨道稳定子定理:
我们定义稳定子: S x = { g x = x } S_x=\{gx=x\} Sx={gx=x}
那么有这样的事实: ρ : O x → G / S x \rho: O_x \rightarrow G \big/S_x ρ:Ox→G/Sx
g x → g S x gx \rightarrow gS_x gx→gSx
那么我们 O x O_x Ox到 G / S x G \big/ S_x G/Sx的一一映射
这个是很有意思的事情,一般不容易发现,这样我们就定义 ∣ G ∣ |G| ∣G∣与 ∣ O x ∣ |O_x| ∣Ox∣的关系
我们先来证明轨道稳定子定理:
( i ) ρ 为 单 射 : ρ ( g 1 x ) = ρ ( g 2 x ) → g 1 S x = g 2 S x , g 1 − 1 g 2 S x = S x (i)\rho 为单射:\rho(g_1 x)=\rho(g_2x)\rightarrow g_1S_x=g_2S_x,g_1^{-1}g_2S_x=S_x (i)ρ为单射:ρ(g1x)=ρ(g2x)→g1Sx=g2Sx,g1−1g2Sx=Sx
g 1 − 1 g 2 ∈ S x , g 1 − 1 g 2 x = x g_1^{-1}g_2 \in S_x,g_1^{-1}g_2x=x g1−1g2∈Sx,g1−1g2x=x
我们得到了很重要的结论: ∣ G ∣ = ∣ S x ∣ ∣ O x ∣ |G|=|S_x||O_x| ∣G∣=∣Sx∣∣Ox∣
我们来看看一个群作用:
多项式: x 1 x 2 + x 2 x 3 + x 3 x 4 + x 4 x 1 x_1x_2+x_2x_3+x_3x_4+x_4x_1 x1x2+x2x3+x3x4+x4x1的对称变换的群
X = { x 1 , x 2 , x 3 , x 4 } X=\{x_1,x_2,x_3,x_4\} X={x1,x2,x3,x4},G作用在X上, τ = ( 1 , 2 , 3 , 4 ) \tau=(1,2,3,4) τ=(1,2,3,4)
!!我们要注意这个事实,我们每次的群作用都是利用在X里面去一个元素来完成,所以我们如果要来衡量 ∣ X ∣ |X| ∣X∣的阶数,
∣ X ∣ = ∑ i = 1 t [ G : S x i ] |X|=\sum_{i=1}^{t}[G:S_{x_i}] ∣X∣=∑i=1t[G:Sxi],其中 x i x_i xi取遍不同轨道的代表元素
我们注意一个很有意思的现象,因为群本身的定义是集合,然后有规定的运算,我们可以定义群作用于群本身的集合,
G × G → G G \times G \rightarrow G G×G→G,我们这里不采用抽象的定义,即映射的方式: g 1 ( g 2 ) → g g_1(g_2) \rightarrow g g1(g2)→g,这里我们采用共轭作用,群 G G G作用在自身
x ∈ G , O x = { g x g − 1 ∣ g ∈ G } , S x = { g ∈ G ∣ g x g − 1 = x } x \in G,O_x=\{gxg^{-1}|g \in G\},S_x=\{g \in G|gxg^{-1}=x\} x∈G,Ox={gxg−1∣g∈G},Sx={g∈G∣gxg−1=x}
我们通常把 O x O_x Ox称为x所在的共轭类, S x S_x Sx称为中心化子
所以我们得到了一个重要的定理:
∣ G ∣ = ∑ x ∣ G : C ( x ) ∣ |G|=\sum_{x}|G:C(x)| ∣G∣=∑x∣G:C(x)∣,我们对这个等式进行整理,把x为中心元素的共轭类的代表元都弄出来,
∣ G : C ( x ) ∣ = 1 |G:C(x)|=1 ∣G:C(x)∣=1(x为中心元素的共轭类)
G G G为有限群, ∣ G ∣ = ∣ C ( G ) ∣ + ∑ x ∣ G : C ( x ) ∣ |G|=|C(G)|+\sum_{x}|G:C(x)| ∣G∣=∣C(G)∣+∑x∣G:C(x)∣
(x为取遍非中心元素的共轭类的代表元)
推论:Cauchy定理:如果 G G G为一个有限群, ∣ G ∣ = n |G|=n ∣G∣=n,对于n每一个素因子p, G G G都有阶为p的元素